Skip to main content
Log in

Enhancement of photocatalytic activities of ZnFe2O4 composite by incorporating halloysite nanotubes for effective elimination of aqueous organic pollutants

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

ZnFe2O4 is a highly desirable catalyst due to its exceptional photo-response in the visible light region, but various drawbacks, such as rapid recombination of photo-generated electron–hole pairs and severe particle agglomeration, make it difficult to use. In this study, a co-precipitation approach was used to create ZnFe2O4/HNT (ZF/HNTs) composites. XRD, SEM, TEM, FTIR, BET, and DRS were used to characterize the ZF/HNT composites. Furthermore, the effectiveness of removing crystal violet under simulated visible light irradiation was used to assess photocatalytic activity. The results showed that ZnFe2O4 with typical diameters of around 20 nm was significantly distributed on halloysite nanotubes. Because of the synergistic impact of the improved agglomeration phenomena of ZnFe2O4 and the decreased recombination rate of photo-generated electrons and holes, all of the composites had superior photocatalytic performance than pure ZnFe2O4. The ZF/HNTs-11 composite exhibited the highest removal performance, removing 96.7% of the sample in less than 150 min. In addition, the composite was very stable and reusable. Consequently, ZF/HNTs-11 composite is an effective catalyst for treating pollutants found in wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data generated during the study are included in the manuscript.

References

  • Abdullayev, E., & Lvov, Y. (2011). Halloysite clay nanotubes for controlled release of protective agents. Journal of Nanoscience and Nanotechnology, 11, 10007–10026.

    Article  CAS  Google Scholar 

  • Akshhayya, C., Okla, M. K., Al-Qahtani, W. H., Raaja Rajeshwari, M., Mohebaldin, A., Alwasel, Y. A., Soufan, W., Abdel-Maksoud, M. A., AbdElgawad, H., & Raju, L. L. (2022). Novel ZnFe2O4 decorated on ZnO nanorod: Synergistic photocatalytic degradation of tetracycline, kinetics, degradation pathway and antifungal activity. Journal of Environmental Chemical Engineering, 10, 107673.

    Article  CAS  Google Scholar 

  • Borade, R. M., Somvanshi, S. B., Kale, S. B., Pawar, R. P., & Jadhav, K. M. (2020). Spinel zinc ferrite nanoparticles: An active nanocatalyst for microwave irradiated solvent free synthesis of chalcones. Materials Research Express, 7, 016116.

    Article  CAS  Google Scholar 

  • Cao, Y., Lei, X., Chen, Q., Kang, C., Li, W., & Liu, B. (2018). Enhanced photocatalytic degradation of tetracycline hydrochloride by novel porous hollow cube ZnFe2O4. Journal of Photochemistry and Photobiology A: Chemistry, 364, 794–800.

    Article  CAS  Google Scholar 

  • Cavallaro, G., Lazzara, G., Taormina, V., & Cascio, D. (2019). Sedimentation of halloysite nanotubes from different deposits in aqueous media at variable ionic strengths. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 576, 22–28.

    Article  CAS  Google Scholar 

  • Chen, Y., Wu, Q., Wang, J., & Song, Y. (2019). Visible-light-driven decomposition of antibiotic oxytetracycline and disinfection of Escherichia coli using magnetically recyclable lanthanum-nitrogen co-doped titania/calcium ferrite/diatomite heterojunction material. Journal of Industrial and Engineering Chemistry, 77, 171–180.

    Article  CAS  Google Scholar 

  • Cheruiyot, G. K., Wanyonyi, W. C., Kiplimo, J. J., & Maina, E. N. (2019). Adsorption of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and thermodynamics study. Scientific African, 5, e00116.

    Article  Google Scholar 

  • Dara, M., Hassanpour, M., Alshamsi, H. A., Baladi, M., & Salavati-Niasari, M. (2021). Green sol–gel auto combustion synthesis and characterization of double perovskite Tb 2 ZnMnO 6 nanoparticles and a brief study of photocatalytic activity. RSC Advances, 11, 8228–8238.

    Article  CAS  Google Scholar 

  • De Luca, P., Foglia, P., Siciliano, C., Nagy, J. B., & Macario, A. (2019). Water contaminated by industrial textile dye: Study on decolorization process. Environments, 6, 101.

    Article  Google Scholar 

  • Di Filippo, P., Pomata, D., Riccardi, C., Buiarelli, F., & Gallo, V. (2015). Oxygenated polycyclic aromatic hydrocarbons in size-segregated urban aerosol. Journal of Aerosol Science, 87, 126–134.

    Article  Google Scholar 

  • Esquinas-Requena, J. L., Lozoya-Moreno, S., García-Nogueras, I., Atienzar-Núñez, P., Sánchez-Jurado, P. M., & Abizanda, P. (2020). La anemia aumenta el riesgo de mortalidad debido a fragilidad y discapacidad en mayores: Estudio FRADEA. Atencion Primaria, 52, 452–461.

    Article  Google Scholar 

  • Essandoh, M., Garcia, R. A., Palochik, V. L., Gayle, M. R., & Liang, C. (2021). Simultaneous adsorption of acidic and basic dyes onto magnetized polypeptidylated-Hb composites. Separation and Purification Technology, 255, 117701.

    Article  CAS  Google Scholar 

  • Falak, P., Hassanzadeh-Tabrizi, S. A., & Saffar-Teluri, A. (2017). Synthesis, characterization, and magnetic properties of ZnO-ZnFe2O4 nanoparticles with high photocatalytic activity. Journal of Magnetism and Magnetic Materials, 441, 98–104.

    Article  CAS  Google Scholar 

  • Feng, J., Nian, P., Zhang, A., & Sun, Y. (2021). Degradation of aqueous methylparaben by non-thermal plasma combined with ZnFe2O4-rGO nanocomposites: Performance, multi-catalytic mechanism, influencing factors and degradation pathways. Chemosphere, 271, 129575.

    Article  CAS  Google Scholar 

  • Foroutan, R., Mohammadi, R., MousaKhanloo, F., Sahebi, S., Ramavandi, B., Kumar, P. S., & Vardhan, K. H. (2020a). Performance of montmorillonite/graphene oxide/CoFe2O4 as a magnetic and recyclable nanocomposite for cleaning methyl violet dye-laden wastewater. Advanced Powder Technology, 31, 3993–4004.

    Article  CAS  Google Scholar 

  • Foroutan, R., Mohammadi, R., Sohrabi, N., Sahebi, S., Farjadfard, S., Esvandi, Z., & Ramavandi, B. (2020b). Calcined alluvium of agricultural streams as a recyclable and cleaning tool for cationic dye removal from aqueous media. Environmental Technology & Innovation, 17, 100530.

    Article  Google Scholar 

  • Foroutan, R., Peighambardoust, S. J., Aghdasinia, H., Mohammadi, R., & Ramavandi, B. (2020c). Modification of bio-hydroxyapatite generated from waste poultry bone with MgO for purifying methyl violet-laden liquids. Environmental Science and Pollution Research, 27, 44218–44229.

    Article  CAS  Google Scholar 

  • Gupta, A. K., Pal, A., & Sahoo, C. (2006). Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions using Ag+ doped TiO2. Dyes and Pigments, 69, 224–232.

    Article  CAS  Google Scholar 

  • Han, J., Jun, B.-M., Heo, J., Kim, S., Yoon, Y., & Park, C. M. (2019). Heterogeneous sonocatalytic degradation of an anionic dye in aqueous solution using a magnetic lanthanum dioxide carbonate-doped zinc ferrite-reduced graphene oxide nanostructure. Ecotoxicology and Environmental Safety, 182, 109396.

    Article  CAS  Google Scholar 

  • Hunge, Y. M., Yadav, A. A., Khan, S., Takagi, K., Suzuki, N., Teshima, K., Terashima, C., & Fujishima, A. (2021). Photocatalytic degradation of bisphenol A using titanium dioxide@ nanodiamond composites under UV light illumination. Journal of Colloid and Interface Science, 582, 1058–1066.

    Article  CAS  Google Scholar 

  • Isari, A. A., Mehregan, M., Mehregan, S., Hayati, F., Kalantary, R. R., & Kakavandi, B. (2020). Sono-photocatalytic degradation of tetracycline and pharmaceutical wastewater using WO3/CNT heterojunction nanocomposite under US and visible light irradiations: A novel hybrid system. Journal of Hazardous Materials, 390, 122050.

    Article  CAS  Google Scholar 

  • Jermy, B. R., Ravinayagam, V., Almohazey, D., Alamoudi, W. A., Dafalla, H., Akhtar, S., & Tanimu, G. (2022). PEGylated green halloysite/spinel ferrite nanocomposites for pH sensitive delivery of dexamethasone: A potential pulmonary drug delivery treatment option for COVID-19. Applied Clay Science, 216, 106333.

    Article  CAS  Google Scholar 

  • Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., & Delvaux, B. (2005). Halloysite clay minerals—A review. Clay Minerals, 40, 383–426.

    Article  CAS  Google Scholar 

  • Khan, M. Y. A., ZahoorShaheen, M. A., Jamil, N., Arshad, M. I., Bajwa, S. Z., Shad, N. A., Butt, R., Ali, I., & Iqbal, M. Z. (2018). Visible light photocatalytic degradation of crystal violet dye and electrochemical detection of ascorbic acid & glucose using BaWO4 nanorods. Materials Research Bulletin, 104, 38–43.

    Article  Google Scholar 

  • Krawczyk, M., Akbari, S., Jeszka-Skowron, M., Pajootan, E., & Fard, F. S. (2016). Application of dendrimer modified halloysite nanotubes as a new sorbent for ultrasound-assisted dispersive micro-solid phase extraction and sequential determination of cadmium and lead in water samples. Journal of Analytical Atomic Spectrometry, 31, 1505–1514.

    Article  CAS  Google Scholar 

  • Lazzara, G., Cavallaro, G., Panchal, A., Fakhrullin, R., Stavitskaya, A., Vinokurov, V., & Lvov, Y. (2018). An assembly of organic-inorganic composites using halloysite clay nanotubes. Current Opinion in Colloid & Interface Science, 35, 42–50.

    Article  CAS  Google Scholar 

  • Li, J., Xiao, Q., Li, L., Shen, J., & Hu, D. (2015). Novel ternary composites: Preparation, performance and application of ZnFe2O4/TiO2/polyaniline. Applied Surface Science, 331, 108–114.

    Article  CAS  Google Scholar 

  • Li, R., He, Q., Hu, Z., Zhang, S., Zhang, L., & Chang, X. (2012). Highly selective solid-phase extraction of trace Pd (II) by murexide functionalized halloysite nanotubes. Analytica Chimica Acta, 713, 136–144.

    Article  CAS  Google Scholar 

  • Li, S., Xue, B., Chen, J., Jiang, W., & Liu, Y. (2020). BiOCOOH microflowers decorated with Ag/Ag2CrO4 nanoparticles as highly efficient photocatalyst for the treatment of toxic wastewater. Catalysts, 10, 93.

    Article  CAS  Google Scholar 

  • Lima, E. S., Costa, L. S., Sampaio, G. R. L. M., Oliveira, E. S., Silva, E. B., Nascimento, H. O., Nascimento, R. F., Moura, K. O., Bastos-Neto, M., & Loiola, A. R. (2019). Zinc ferrite nanoparticles via coprecipitation modified method: Glycerol as structure directing and stabilizing agent. Journal of the Brazilian Chemical Society, 30, 882–891.

    CAS  Google Scholar 

  • Liu, L., Li, S., Zheng, J., Bu, T., He, G., & Jianping, Wu. (2020). Safety considerations on food protein-derived bioactive peptides. Trends in Food Science & Technology, 96, 199–207.

    Article  CAS  Google Scholar 

  • Liu, Y., Yu, H., Lv, Z., Zhan, S., Yang, J., Peng, X., Ren, Y., & Wu, X. (2012). Simulated-sunlight-activated photocatalysis of Methylene Blue using cerium-doped SiO2/TiO2 nanostructured fibers. Journal of Environmental Sciences, 24, 1867–1875.

    Article  CAS  Google Scholar 

  • Liu, Y., Zhang, J., Guan, H., Zhao, Y., Yang, J.-H., & Zhang, B. (2018). Preparation of bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes for hydrolytic dehydrogenation of ammonia borane. Applied Surface Science, 427, 106–113.

    Article  CAS  Google Scholar 

  • Ma, J., Wang, X., Wang, G., & Wang, H. (2019). Zinc ferrite nanorod-assembled mesoporous microspheres as advanced anode materials for sodium-ion batteries. Energy Technology, 7, 1900479.

    Article  CAS  Google Scholar 

  • Madejova, J., & Komadel, P. (2001). Baseline studies of the clay minerals society source clays: Infrared methods. Clays and Clay Minerals, 49, 410–432.

    Article  CAS  Google Scholar 

  • Massaro, M., Colletti, C. G., Lazzara, G., Milioto, S., Noto, R., & Riela, S. (2017). Halloysite nanotubes as support for metal-based catalysts. Journal of Materials Chemistry A, 5, 13276–13293.

    Article  CAS  Google Scholar 

  • Mishra, S., Sahu, T. K., Verma, P., Kumar, P., & Samanta, S. K. (2019). Microwave-assisted catalytic degradation of brilliant green by spinel zinc ferrite sheets. ACS Omega, 4, 10411–10418.

    Article  CAS  Google Scholar 

  • Mittal, H., Alili, A. A., Morajkar, P. P., & Alhassan, S. M. (2021). Graphene oxide crosslinked hydrogel nanocomposites of xanthan gum for the adsorption of crystal violet dye. Journal of Molecular Liquids, 323, 115034.

    Article  CAS  Google Scholar 

  • Mittal, M., Sharma, M., & Pandey, O. P. (2014). Photocatalytic studies of crystal violet dye using Mn doped and PVP capped ZnO nanoparticles. Journal of Nanoscience and Nanotechnology, 14, 2725–2733.

    Article  CAS  Google Scholar 

  • Mohamed, F., Abukhadra, M. R., & Shaban, M. (2018). Removal of safranin dye from water using polypyrrole nanofiber/Zn-Fe layered double hydroxide nanocomposite (Ppy NF/Zn-Fe LDH) of enhanced adsorption and photocatalytic properties. Science of the Total Environment, 640, 352–363.

    Article  Google Scholar 

  • Monsef, R., Soofivand, F., Alshamsi, H. A., Al-Nayili, A., Ghiyasiyan-Arani, M., & Salavati-Niasari, M. (2021). Sonochemical synthesis and characterization of PrVO4/CdO nanocomposite and their application as photocatalysts for removal of organic dyes in water. Journal of Molecular Liquids, 336, 116339.

    Article  CAS  Google Scholar 

  • Moreira, E., Fraga, L. A., Mendonça, M. H., & Monteiro, O. C. (2012). Synthesis, optical, and photocatalytic properties of a new visible-light-active ZnFe2O4–TiO2 nanocomposite material. Journal of Nanoparticle Research, 14.

  • Pandey, G., Tharmavaram, M., & Rawtani, D. (2020). Halloysite nanotubes: an ‘aluminosilicate nanosupport’for energy and environmental applications. In, Nanotechnology for Energy and Environmental Engineering (Springer).

  • Pandey, G., Tharmavaram, M., Phadke, G., Rawtani, D., Ranjan, M., & Sooraj, K. P. (2022). Silanized halloysite nanotubes as ‘nano-platform’for the complexation and removal of Fe (II) and Fe (III) ions from aqueous environment. Separation and Purification Technology, 293, 121141.

    Article  CAS  Google Scholar 

  • Pashaei-Fakhri, S., Peighambardoust, S. J., Foroutan, R., Arsalani, N., & Ramavandi, B. (2021). Crystal violet dye sorption over acrylamide/graphene oxide bonded sodium alginate nanocomposite hydrogel. Chemosphere, 270, 129419.

    Article  CAS  Google Scholar 

  • Peighambardoust, S. J., Aghamohammadi-Bavil, O., Foroutan, R., & Arsalani, N. (2020). Removal of malachite green using carboxymethyl cellulose-g-polyacrylamide/montmorillonite nanocomposite hydrogel. International Journal of Biological Macromolecules, 159, 1122–1131.

    Article  CAS  Google Scholar 

  • Qing, S., Qi, Q., Jian, Z., Fang-Zhen, P., & Jia-Wei, S. (2018). Structure and adsorption property of magnetic ZnFe2O4-halloysite composite material. Journal of Inorganic Materials, 33, 390–396.

    Article  Google Scholar 

  • Rauf, M. A., & Ashraf, S. S. (2009). Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal, 151, 10–18.

    Article  CAS  Google Scholar 

  • Rawtani, D., Pandey, G., Tharmavaram, M., Pathak, P., Akkireddy, S., & Agrawal, Y. K. (2017). Development of a novel ‘nanocarrier’system based on Halloysite Nanotubes to overcome the complexation of ciprofloxacin with iron: An in vitro approach. Applied Clay Science, 150, 293–302.

    Article  CAS  Google Scholar 

  • Shakoor, S., & Nasar, A. (2018). Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste. Groundwater for Sustainable Development, 7, 30–38.

    Article  Google Scholar 

  • Sharma, M., Jain, T., Singh, S., & Pandey, O. P. (2012). Photocatalytic degradation of organic dyes under UV–visible light using capped ZnS nanoparticles. Solar Energy, 86, 626–633.

    Article  CAS  Google Scholar 

  • Spector, P. E., Fox, S., Penney, L. M., Bruursema, K., Goh, A., & Kessler, S. (2006). The dimensionality of counterproductivity: Are all counterproductive behaviors created equal? Journal of Vocational Behavior, 68, 446–460.

    Article  Google Scholar 

  • Tharmavaram, M., Pandey, G., & Rawtani, D. (2018). Surface modified halloysite nanotubes: A flexible interface for biological, environmental and catalytic applications. Advances in Colloid and Interface Science, 261, 82–101.

    Article  CAS  Google Scholar 

  • Tharmavaram, M., Pandey, G., Bhatt, P., Prajapati, P., Rawtani, D., Sooraj, K. P., & Ranjan, M. (2021). Chitosan functionalized halloysite nanotubes as a receptive surface for laccase and copper to perform degradation of chlorpyrifos in aqueous environment. International Journal of Biological Macromolecules, 191, 1046–1055.

    Article  CAS  Google Scholar 

  • Voll, D., Lengauer, C., Beran, A., & Schneider, H. (2001). Infrared band assignment and structural refinement of Al-Si, Al-Ge, and Ga-Ge mullites. European Journal of Mineralogy, 13, 591–604.

    Article  CAS  Google Scholar 

  • Wang, W., Guo, S., Zhang, D., & Yang, Z. (2019). One-pot hydrothermal synthesis of reduced graphene oxide/zinc ferrite nanohybrids and its catalytic activity on the thermal decomposition of ammonium perchlorate. Journal of Saudi Chemical Society, 23, 133–140.

    Article  CAS  Google Scholar 

  • Wu, Y.-H., Xue, K., Ma, Q.-L., Ma, T., Ma, Y.-L., Sun, Y.-G., & Ji, W.-X. (2021). Removal of hazardous crystal violet dye by low-cost P-type zeolite/carbon composite obtained from in situ conversion of coal gasification fine slag. Microporous and Mesoporous Materials, 312, 110742.

    Article  CAS  Google Scholar 

  • Xiao, R., Zhao, C., Zou, Z., Chen, Z., Tian, L., Xu, H., Tang, H., Liu, Q., Lin, Z., & Yang, X. (2020). In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Applied Catalysis b: Environmental, 268, 118382.

    Article  CAS  Google Scholar 

  • Yadav, N. G., Chaudhary, L. S., Sakhare, P. A., Dongale, T. D., Patil, P. S., & Sheikh, A. D. (2018). Impact of collected sunlight on ZnFe2O4 nanoparticles for photocatalytic application. Journal of Colloid and Interface Science, 527, 289–297.

    Article  CAS  Google Scholar 

  • Yang, B., Zhang, S., Gao, Y., Huang, L., Yang, C., Hou, Y., & Zhang, J. (2022). Unique functionalities of carbon shells coating on ZnFe2O4 for enhanced photocatalytic hydroxylation of benzene to phenol. Applied Catalysis b: Environmental, 304, 120999.

    Article  CAS  Google Scholar 

  • Zhang, Y., Tang, A., Yang, H., & Ouyang, J. (2016). Applications and interfaces of halloysite nanocomposites. Applied Clay Science, 119, 8–17.

    Article  CAS  Google Scholar 

  • Zhou, F., Wang, H., Zhou, S., Liu, Y., & Yan, C. (2020). Fabrication of europium-nitrogen co-doped TiO2/Sepiolite nanocomposites and its improved photocatalytic activity in real wastewater treatment. Applied Clay Science, 197, 105791.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the general research services of the University of Al-Qadisiyah (Iraq).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Abbas Al-nayili methodology. Mais Al-abidy contributed to data collection and analysis. Abbas Al-nayili contributed to data interpretation and writing the manuscript. Abbas Al-nayili project administration. All authors read and approved the final version to be published.

Corresponding author

Correspondence to Abbas Al-nayili.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Consent to participate

Not relevant.

Consent for publication

Not relevant.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-abidy, M., Al-nayili, A. Enhancement of photocatalytic activities of ZnFe2O4 composite by incorporating halloysite nanotubes for effective elimination of aqueous organic pollutants. Environ Monit Assess 195, 190 (2023). https://doi.org/10.1007/s10661-022-10811-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10811-4

Keywords

Navigation