Skip to main content

Advertisement

Log in

First assessment of root biomass and root carbon and nitrogen stocks in Turkish floodplain forests

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Estimation of whole root biomass including coarse and larger roots and root balls can provide better understanding of carbon and nitrogen stocks in floodplain forests. Whole root systems of nine ash trees (Fraxinus angustifolia Vahl.) and six alder trees (Alnus glutinosa L.) trees ranging in diameter breast height (dbh) from 29.1 to 72.0 cm for ash and from 29.1 to 44.3 cm for alder were excavated, and their small < 1 cm, medium 1–4 cm, larger > 4 cm and root-ball biomass, and root carbon and nitrogen stocks were determined in Karacabey floodplain forest in Bursa, Turkey. In addition, for the method comparison, small root biomass (< 1 cm) was also determined using soil-core method. The whole root biomass of ash trees varied from 167.7 to 186.8 Mg ha−1. Alder trees had lower whole root biomass than ash trees ranging from 49.0 to 63.6 Mg ha−1. The determination of small root biomass by soil excavation method was nearly two-fold higher than by soil core method. Both root carbon and nitrogen stocks showed an increase with increasing root diameter. Among the tree characteristics (dbh, age, height, and volume), the dbh showed the highest correlation with whole root biomass and root carbon and nitrogen stocks for both tree species. It is concluded that young trees can have higher small, medium, and large root biomass and store more C and N in those roots, whereas older trees can have higher root-ball biomass and root-ball carbon and nitrogen stocks in Karacabey floodplain forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data produced from this study are available from the corresponding author on reasonable request.

References

  • Abdul Malak, D., Marin, A. I., Trombetti, M., & San Roman, S. (2021). Carbon pools and sequestration potential of wetlands in the European Union. European Topic Centre on Urban, Land and Soil Systems, Viena & Malaga. ISBN 978-3-200-07433-0.

  • Adame, M. F., Teutli, C., Santini, N. S., Caamal, J. P., Zaldívar-Jiménez, A., Hernández, R., & Herrera-Silveira, J. A. (2014). Root biomass and production of mangroves surrounding a karstic oligotrophic coastal lagoon. Wetlands 34, 479–488. https://doi.org/10.1007/s13157-014-0514-5

  • Adame, F. M., Cherian, S., Reef, R., & Stewart-Koster, B. (2017). Mangrove root biomass and the uncertainty of belowground carbon estimations. Forest Ecology and Management, 403, 52–60. https://doi.org/10.1016/j.foreco.2017.08.016

    Article  Google Scholar 

  • Addo-Danso, S. D., Prescott, C. E., & Smith, A. R. (2016). Methods for estimating root biomass and production in forest and woodland ecosystem carbon studies: A review. Forest Ecology and Management, 359, 332–351. https://doi.org/10.1016/j.foreco.2015.08.015

    Article  Google Scholar 

  • Ahmed S., Kamruzzaman M., Azad M. S., & Khan M. N. I. (2021). Fine root biomass and its contribution to the mangrove communities in three saline zones of Sundarbans, Bangladesh. Rhizosphere, 17, 100294. https://doi.org/10.1016/j.rhisph.2020.100294

  • Allen, S. E. (1989). Chemical analysis of ecological materials (2nd ed.). Blackwell Scientific Publications.

    Google Scholar 

  • Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6(1), 195–219. https://doi.org/10.1146/annurev-marine-010213-135020

  • Alongi, D. M., & Dixon, P. (2000). Mangrove primary production and above- and below-ground biomass in Sawi Bay, southern Thailand. Phuket Marine Biological Center Special Publication, 22, 3l–38.

    Google Scholar 

  • Aosaar, J., Varik, M., Lõhmus, K., et al. (2013). Long-term study of above- and below-ground biomass production in relation to nitrogen and carbon accumulation dynamics in a grey alder (Alnus incana (L.) Moench) plantation on former agricultural land. European Journal of Forest Research, 132, 737–749. https://doi.org/10.1007/s10342-013-0706-1

    Article  CAS  Google Scholar 

  • Baker III, T. T., Conner, W. H., Lockaby, B. G., Stanturf, J., & Burke, M. K. (2001). Fine root productivity and dynamics on a forested floodplain in South Carolina. Soil Science Society of America Journal, 65, 545–556. https://doi.org/10.2136/sssaj2002.6710

  • Bārdulis, A., Lazdiņa, D., Daugaviete, M., Bārdule, A., Daugavietis, U., & Rozītis, G. (2015). Above ground and below ground biomass in grey alder (Alnus incana (L.) Moench). young stands on agricultural land in central part of Latvia. Agronomy Research, 13(2), 277–286.

  • Bledsoe, C., Fahey, T. J., Ruess, R., & Day, F. P. (1999). Measurement of static root parameters-biomass, length, distribution. In G. P. Robertson, C. S. Bledsoe, D. C. Coleman, & P. Sollins (Eds.), Standard Soils Methods for Long-term Ecological Research (pp. 413–435). Oxford University Press.

    Google Scholar 

  • Brack, C. (2006). Tree crown: Forest measurement and modelling. http://sres-associated.anu.edu.au/mensuration/crown.htm

  • Brassard, B. W., Chen, H. Y., Bergeron, Y., & Paré, D. (2011). Coarse root biomass allometric equations for Abies balsamea, Picea mariana, Pinus banksiana, and Populus tremuloides in the boreal forest of Ontario, Canada. Biomass and Bioenergy, 35, 4189–4196. https://doi.org/10.1016/j.biombioe.2011.06.045

    Article  Google Scholar 

  • Brunner, I., & Godbold, D. L. (2007). Tree roots in a changing world. Journal of Forest Research, 12(2), 78–82. https://doi.org/10.1007/s10310-006-0261-4

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 54, 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x

    Article  Google Scholar 

  • Bulmer, R. H., Schwendenmann, L., & Lundquist, C. J. (2016). Carbon and nitrogen stocks and below-ground allometry in temperate mangroves. Frontiers in Marine Science, 3, 150. https://doi.org/10.3389/fmars.2016.00150

  • Cierjacks, A., Kleinschmit, B., Kowarik, I. Graf, M., & Lang F. (2011). Organic matter distribution in floodplains can be predicted using spatial and vegetation structure data. River Research & Application, 27, 1048–1057. https://doi.org/10.1002/rra.1409

  • Claus, A., & George, E. (2005). Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Canadian Journal of Forest Research, 35, 1617–1625. https://doi.org/10.1139/x05-079

    Article  Google Scholar 

  • Çömez, A. (2010). Determination of carbon sequestration in Scots pine (Pinus sylvestris L.) stands on Sündiken mountain. İstanbul University, PhD Thesis. 233 p.

  • Dantas, D., de Terra, M., & C. N. S., Pinto, L. O. R., Calegario, N., & Maciel, S. M. (2020). Above and belowground carbon stock in a tropical forest in Brazil Acta Scientiarum. Agronomy, 43(1), e48276. https://doi.org/10.4025/actasciagron.v43i1.48276

    Article  Google Scholar 

  • Dayathilake, D. D. T. L., Lokupitiya, E. & Wijeratne, V. P. I. S. (2020). Estimation of aboveground and belowground carbon stocks in urban freshwater wetlands of Sri Lanka. Carbon Balance Manage, 15, 17. https://doi.org/10.1186/s13021-020-00152-5

  • de Assis, R. L., Wittmann, F., Bredin, Y. K., Schöngart, J., Quesada, C. A. N., Piedade, M. T. F., & Haugaasen, T. (2019). Above-ground woody biomass distribution in Amazonian floodplain forests: Effects of hydroperiod and substrate properties. Forest Ecology & Management, 432, 365–375. https://doi.org/10.1016/j.foreco.2018.09.031

    Article  Google Scholar 

  • Fortier, J., Truax, B., Gagnon, D., et al. (2019). Abiotic and biotic factors controlling fine root biomass, carbon and nutrients in closed-canopy hybrid poplar stands on post-agricultural land. Scientific Reports, 9, 6296. https://doi.org/10.1038/s41598-019-42709-6

    Article  CAS  Google Scholar 

  • From, A. S., Krauss, K. W., Noe, G. B., Cormier, N., Stagg, C. L., Moss, R. F., et al. (2021). Belowground productivity varies by assessment technique, vegetation type, and nutrient availability in tidal freshwater forested wetlands transitioning to marsh. PLoS ONE, 16(7), e0253554. https://doi.org/10.1371/journal.pone.0253554

    Article  CAS  Google Scholar 

  • Gardner, R. C., & Finlayson, C. M. (2018). Ramsar convention on Wetlands. Global wetland outlook: State of the world’s wetlands and their services to people. Gland, Switzerland: Ramsar Convention Secretariat.

  • Girardin, C. A. J., Aragão, L. E. O. C., Malhi, Y., Huasco, W. H., Metcalfe, D. B., Durand, L., Mamani, M., Silva-Espejo, J. E., & Whittaker, R. J. (2013). Fine root dynamics along an elevational gradient in tropical Amazonian and Andean forests. Global Biogeochemical Cycles, 27, 1–13. https://doi.org/10.1029/2011GB004082

  • Feng, H., Chen, Q., Hu, Y., Du, Z., Lin, G., Wang, C., & Huang, Y. (2021) Estimation of forest aboveground biomass by using mixed-effects model. International Journal of Remote Sensing, 42(22), 8675–8690. https://doi.org/10.1080/01431161.2021.1984611

  • Huynh, T., Lee, D. J., Applegate, G., & Lewis, T. (2021). Field methods for above and belowground biomass estimation in plantation forests. MethodsX, 8, 101192. https://doi.org/10.1016/j.mex.2020.101192

    Article  CAS  Google Scholar 

  • Jagodzinski, A. M., Jędrzej, Z., Aleksandra, W., Hubert, P., & Gordon, L. E. (2016). Tree age effects on fine root biomass and morphology over chronosequences of Fagus sylvatica, Quercus robur and Alnus glutinosa stands. PLoS ONE, 11(2), e0148668. https://doi.org/10.1371/journal.pone.0148668

    Article  CAS  Google Scholar 

  • Kaçar, B. (2016). Physical and chemical soil analysis. Nobel Academic Publications.

    Google Scholar 

  • Komiyama A, Ogino K, Aksornkoae S, & Sabhasri S. (1987). Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass. Journal of Tropical Ecology, 3, 97108. https://doi.org/10.1017/S0266467400001826

  • Lang’at, J. K. S., Kirui, B. K. Y., Skov, M. W., Kairo, J. G., Mencuccini, M., & Huxham, M. (2013). Species mixing boosts root yield in mangrove trees. Oecologia, 172(1), 271–278. https://doi.org/10.1007/s00442-012-2490-x

    Article  Google Scholar 

  • Lima, A. J. N., Suwa, R., de Mello Ribeiro, G. H. P., Kajimoto, T., dos Santos, J., da Silva, R. P., de Souza, C. A. S., de Barros, P., Noguchi, H., Ishizuka, M., & Higuchi, N. (2012). Allometric models for estimating above-and belowground biomass in Amazonian forests at São Gabriel da Cachoeira in the upper Rio Negro, Brazil. Forest Ecology & Management, 277, 163–172. https://doi.org/10.1016/j.foreco.2012.04.028

    Article  Google Scholar 

  • Liu, Y., Ni, H., Zeng, Z., & Chai, C. (2013). Effect of disturbance on carbon cycling in wetland ecosystem. Advanced Materials Research. https://doi.org/10.4028/www.scientific.net/AMR.610-613.3186

    Article  Google Scholar 

  • Macinnis-Ng, C., Fuentes, M. O. S., O’Grady, A. P., Palmer, A. R., Taylor, D., Whitley, R. J., Yunusa, I., Zeppel, M. J. B., & Eamus, D. (2010). Root biomass distribution and soil properties of an open woodland on a duplex soil. Plant and Soil, 327, 377–388. https://doi.org/10.1007/s11104-009-0061-7

    Article  CAS  Google Scholar 

  • Makkonen, K., & Helmisaari, H.-S. (1998). Seasonal and yearly variations of fine-root biomass and necromass in a Scots pine (Pinus sylvestris L.) stand. Forest Ecology & Management, 102, 283–290. https://doi.org/10.1016/S0378-1127(97)00169-2

    Article  Google Scholar 

  • Miller, A. T., Allen, H. L., & Maier, C. A. (2006). Quantifying the coarse-root biomass of intensively managed loblolly pine plantations Canadian. Journal of Forest Research, 36, 12–22. https://doi.org/10.1139/x05-229

    Article  Google Scholar 

  • Moser, G., Leuschner, C., Röderstein, M., Graefe, S., Soethe, N., & Hertel, D. (2010). Biomass and productivity of fine and coarse roots in five tropical mountain forests stands along an altitudinal transect in southern Ecuador. Plant Ecology & Diversity, 3(2), 151–164. https://doi.org/10.1080/17550874.2010.517788

    Article  Google Scholar 

  • Njana, M. A., Eid, T., Zahabu, E., & Malimbwi, R. (2015). Procedures for quantification of belowground biomass of three mangrove tree species. Wetlands Ecology & Management, 23, 749–764. https://doi.org/10.1007/s11273-015-9417-3

    Article  Google Scholar 

  • Neumann, M., Godbold, D. L., Hirano, Y., & Finér, L. (2020). Improving models of fine root carbon stocks and fluxes in European forests. Journal of Ecology, 108(2), 496–514. https://doi.org/10.1111/1365-2745.13328

    Article  CAS  Google Scholar 

  • Niiyama, K., Kajimoto, T., Matsuura, Y., Yamashita, T., Matsuo, N., Yashiro, Y., Ripin, A., Kassim, A. R., & Noor, N. S. (2010). Estimation of root biomass based on excavation of individual root systems in a primary dipterocarp forest in Pasoh Forest Reserve, Peninsular Malaysia. Journal of Tropical Ecology, 26, 271–284. https://doi.org/10.1017/S0266467410000040

  • Ouimet, R., Camiré, C., Brazeau, M., & Moore, J.-D. (2008). Estimation of coarse root biomass and nutrient content for sugar maple, Jack pine, and black spruce using stem diameter at breast height. Canadian Journal of Forest Research, 38, 92–100. https://doi.org/10.1139/X07-134

    Article  Google Scholar 

  • Raich, J. W., Clark, D. A., Schwendenmann, L., & Wood, T. E. (2014). Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment. PLoS ONE, 9(6), e100275. https://doi.org/10.1371/journal.pone.0100275

    Article  CAS  Google Scholar 

  • Resh, S. C., Battaglia, M., Worledge, D., & Ladiges, S. (2003). Coarse root biomass for eucalypt plantations in Tasmania, Australia: Sources of variation and methods for assessment. Trees, 17, 389–399. https://doi.org/10.1007/s00468-003-0250-6

    Article  Google Scholar 

  • Shupe, H. A., Hartmann, T., Scholz, M., Jensen, K., & Ludewig, K. (2021). Carbon stocks of hardwood floodplain forests along the middle Elbe: The influence of forest age, structure, species, and hydrological conditions. Water, 13(5), 670. https://doi.org/10.3390/w13050670

    Article  CAS  Google Scholar 

  • Sun, T., Dong, L., Mao, Z., & Li, Y. (2015). Fine root dynamics of trees and understory vegetation in a chronosequence of Betula platyphylla stands. Forest Ecology & Management, 346, 1–9. https://doi.org/10.1016/j.foreco.2015.02.035

  • Tamooh, F., Huxham, M., Karachi, M., Mencuccini, M., Kairo, J. G., & Kirui, B. (2008). Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay. Kenya. Forest Ecology & Management, 256(6), 1290–1297. https://doi.org/10.1016/j.foreco.2008.06.026

    Article  Google Scholar 

  • Valiela, I., & Cole, M. (2002). Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads. Ecosystems, 5, 92–102. https://doi.org/10.1007/s10021-001-0058-4

    Article  Google Scholar 

  • Vesterdal, L., & Raulund-Rasmussen, K. (1998). Forest floor chemistry under seven tree species along a soil fertility gradient. Canadian Journal of Forest Research, 28(11), 1636–1647. https://doi.org/10.1139/x98-140

    Article  CAS  Google Scholar 

  • Vogt, K. A. Vogt, D. J. & Bloomfield, J. (1998). Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. in root demographics and their efficiencies in sustainable agriculture, grasslands, and forest ecosystems, Ed. by J. E. Box (Kluwer, Dordrecht), pp. 687–721.

  • Wakawa, L. D. (2016). Biomass estimation in forest ecosystems-A review. Journal of Research in Forestry, Wildlife & Environment, 8, 126–144.

    Google Scholar 

  • Yuan, Z. Y., & Chen, H. Y. H. (2010). Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Critical Reviews in Plant Sciences, 29(4), 204–221. https://doi.org/10.1080/07352689.2010.483579

Download references

Acknowledgements

General Directorate of Forestry, Department of International Relations, Education and Research, for granting permission to work in Karacabey Floodplain Forest protected by the International Ramsar Agreement.

Funding

This research was funded by The Scientific and Technological Research Council of Turkey (TUBITAK) with the project number 219O146.

Author information

Authors and Affiliations

Authors

Contributions

TS designed the study, TS and MT collected the soil and root samples; SP measured stand characteristics; MT prepared the soil and root samples for analysis. TS, SP, and MT prepared the tables and figures. TS wrote the manuscript. All the authors contributed to editing and agreed on the final version.

Corresponding author

Correspondence to T. Sariyildiz.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sariyildiz, T., Tani, M. & Parlak, S. First assessment of root biomass and root carbon and nitrogen stocks in Turkish floodplain forests. Environ Monit Assess 195, 148 (2023). https://doi.org/10.1007/s10661-022-10758-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10758-6

Keywords

Navigation