Skip to main content

Advertisement

Log in

Identifying contamination of heavy metals in soils of Peruvian Amazon plain: use of multivariate statistical techniques

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Peruvian Amazon plain has abundant natural resources and is home to great biodiversity, which makes it an area with high economic potential. However, the use of its resources through various activities has contributed to the release of heavy metals (HMs) into its soils, generating severe pollution problems which have mainly affected the health of local populations and their ecosystems. Currently, there are no comprehensive studies that have identified the specific sources of contamination by HMs in the soils of this part of the Peruvian territory. In this sense, this research aims to identify the possible sources of contamination by HMs in the soils of the Peruvian Amazon plain to focus efforts on the establishment of adequate measures for the protection of the health of people and the ecosystem. In the present study, samples of topsoils (0–20 cm depth) and subsoils (100–150 cm depth) were collected for the analysis of 11 HMs (Co, Cr, Cu, Fe, Mn, Ni, Pb, V, Zn, Be, and Hg) in 48 sites located in four regions of the Peruvian Amazon plain (Loreto, Amazonas, San Martín, and Ucayali), over the year 2019. The enrichment factor and geoaccumulation index were applied to assess contamination levels of HMs. The results indicated that topsoils and subsoils presented a greater enrichment by the elements Be and Pb, and were classified as moderately contaminated. Likewise, the integral analysis of these indexes together with principal component analysis, hierarchical cluster analysis, correlation analysis, and coefficient of variation allowed the identification of potential sources of contamination by HMs. As a result, Fe, Co, Zn, Ni, V, and Cr were associated with natural or lithogenic sources (parent material, crude oil deposits, and organic matter decomposition). Hg was attributed to anthropogenic sources (illegal gold mining, atmospheric deposition, and vehicle emissions). Be, Pb, Cu, and Mn originated from natural sources (parent material, crude oil deposits, decomposition of organic matter, and forest fires) and anthropogenic (areas degraded by solid waste, illegal gold mining, agriculture, and hydrocarbons). These findings provide essential information to establish regulations and prevent and control HM contamination in soils of the Peruvian Amazon plain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Code availability

The code that supports the findings of this study is available from the corresponding author, upon reasonable request.

References

  • Abdullah, S., Ismail, M., & Ahmed, A. N. (2018). Identification of air pollution potential sources through Principal component analysis (PCA). International Journal of Civil Engineering and Technology, 9(7), 1435–1442. https://bit.ly/3q4yioh

  • Aboubakar, A., Douaik, A., Mewouo, Y. C. M., Madong, R. C. B. A., Dahchour, A., & El Hajjaji, S. (2021). Determination of background values and assessment of pollution and ecological risk of heavy metals in urban agricultural soils of Yaoundé. Cameroon. Journal of Soils and Sediments, 21(3), 1437–1454. https://doi.org/10.1007/s11368-021-02876-4

    Article  CAS  Google Scholar 

  • Adimalla, N. (2020). Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environmental Geochemistry and Health, 42(1), 59–75. https://doi.org/10.1007/s10653-019-00270-1

    Article  CAS  Google Scholar 

  • Aihemaiti, A., Gao, Y., Meng, Y., Chen, X., Liu, J., Xiang, H., Xu, Y., & Jiang, J. (2020). Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites. Science of the Total Environment, 712, 135637. https://doi.org/10.1016/j.scitotenv.2019.135637

    Article  CAS  Google Scholar 

  • Aikpokpodion P.E., Lajide L., & Aiyesanmi, A.F. (2012). Metal fractionation in soils collected from selected cocoa plantations in Ogun state, Nigeria. World Applied Sciences Journal, 20(5), 628–636. https://bit.ly/3AI69bF

  • Ali, M. H., Mustafa, A. R. A., & El-Sheikh, A. A. (2016). Geochemistry and spatial distribution of selected heavy metals in surface soil of Sohag, Egypt: A multivariate statistical and GIS approach. Environmental Earth Sciences, 75(18), 1–17. https://doi.org/10.1007/s12665-016-6047-x

    Article  CAS  Google Scholar 

  • Almasoud, F. I., Usman, A. R., & Al-Farraj, A. S. (2014). Heavy metals in the soils of the Arabian Gulf coast affected by industrial activities: Analysis and assessment using enrichment factor and multivariate analysis. Arabian Journal of Geosciences, 8(3), 1691–1703. https://doi.org/10.1007/s12517-014-1298-x

    Article  CAS  Google Scholar 

  • Alonzo, R. B. R., & Huayaney, M. E. A. (2020). Análisis geomorfológico y dinámica fluvial del río Huallaga en la localidad de Yurimaguas. Investigaciones sociales, 23(43), 71–85. https://doi.org/10.15381/is.v23i43.18487

  • ANA (Autoridad Nacional del Agua). (2018). Clasificación de los Cuerpos de Agua Continentales Superficiales - Lóticos. Retrieved June 21, 2022, from https://bit.ly/3AILXr8

  • Arbaiza-Peña, A. K., Panduro-Pisco, G., Díaz-Zúñiga, E., Guadalupe-Baylon, N. K., Angulo-García, N., & Iannacone, J. (2022). Composición elemental y de metales pesados en los residuos de palma en la Amazonía Perú. Tropical and Subtropical Agroecosystems, 25(2). https://doi.org/10.56369/tsaes.3967

  • Åström, M. E., Yu, C., Peltola, P., Reynolds, J. K., Österholm, P., Nystrand, M. I., & Ojala, A. E. (2018). Sources, transport and sinks of beryllium in a coastal landscape affected by acidic soils. Geochimica Et Cosmochimica Acta, 232, 288–302. https://doi.org/10.1016/j.gca.2018.04.025

    Article  CAS  Google Scholar 

  • ATSDR (Agencia para Sustancias Tóxicas y el Registro de Enfermedades). (2004). Reseña Toxicológica del Cobre. Atlanta, GA: Departamento de Salud y Servicios Humanos de los EE.UU. Servicio de Salud Pública. Retrieved July 30, 2021, from https://bit.ly/3RdcbrM

  • ATSDR (Agencia para Sustancias Tóxicas y el Registro de Enfermedades). (2016a). Reseña Toxicológica del Cromo. Atlanta, GA: Departamento de Salud y Servicios Humanos de los EE.UU., Servicio de Salud Pública. Retrieved June 21, 2022, from https://bit.ly/3AoeKQj

  • ATSDR (Agencia para Sustancias Tóxicas y el Registro de Enfermedades). (2016b). Reseña Toxicológica del Vanadio. Atlanta, GA: Departamento de Salud y Servicios Humanos de los EE.UU., Servicio de Salud Pública. Retrieved August 24, 2021, from https://bit.ly/3KymdkR

  • ATSDR (Agencia para Sustancias Tóxicas y el Registro de Enfermedades). (2022). Reseña Toxicológica del Berilio. Atlanta, GA: Departamento de Salud y Servicios Humanos de los EE.UU., Servicio de Salud Pública. Retrieved June 21, 2022, from https://bit.ly/3Q9FbPN

  • Ballabio, C., Panagos, P., Lugato, E., Huang, J. H., Orgiazzi, A., Jones, A., Fernández-Ugalde, O., Borrelli, P., & Montanarella, L. (2018). Copper distribution in European topsoils: An assessment based on LUCAS soil survey. Science of the Total Environment, 636, 282–298. https://doi.org/10.1016/j.scitotenv.2018.04.268

    Article  CAS  Google Scholar 

  • Barbosa, L. C. (2015). Guardians of the Brazilian Amazon rainforest: Environmental organizations and development. Routledge. https://doi.org/10.4324/9781315739670

    Article  Google Scholar 

  • BCRP (Banco Central de Reserva del Perú). (2021a). AMAZONAS: Síntesis de Actividad Económica. Enero 2021a. Departamento de Estudios Económicos - Sucursal Piura. Retrieved November 12, 2020, from https://bit.ly/3Q8zOQH

  • BCRP (Banco Central de Reserva del Perú). (2021b). Loreto: Síntesis de Actividad Económica Abril 2021b. Departamento de Estudios Económicos – Sucursal Iquitos. Retrieved November 18, 2020, from https://bit.ly/3CSEdV5

  • BCRP (Banco Central de Reserva del Perú). (2021c). San Martín: Síntesis de Actividad Económica Abril 2021c. Departamento de Estudios Económicos – Sucursal Iquitos. Retrieved November 22, 2020, from https://bit.ly/3QaiP0y

  • BCRP (Banco Central de Reserva del Perú). (2021d). Ucayali: Síntesis de Actividad Económica Abril 2021d. Departamento de Estudios Económicos – Sucursal Iquitos. Retrieved November 24, 2020, from https://bit.ly/3wQCImy

  • Becerra, M.J., Flores Rangel, J.A., Gonçalves, C.U., Tovar, G.I. (2021). The Indigenous territories and local sustainable development in the Amazon region. In: Singh, R.B., Chatterjee, S., Mishra, M., de Lucena, A.J. (eds) Practices in Regional Science and Sustainable Regional Development. Springer, Singapore. https://doi.org/10.1007/978-981-16-2221-2_4

  • Bernardino, C. A., Mahler, C. F., Santelli, R. E., Braz, B. F., Borges, R. C., Fernandes, J. O., Gomes, A. C., Cincotto, F. H., & Novo, L. A. (2022). Contamination of roadside soils by metals linked to catalytic converters in Rio De Janeiro. Brazil. Environmental Forensics, 23(1–2), 221–233. https://doi.org/10.1080/15275922.2021.1892875

    Article  CAS  Google Scholar 

  • Bhuiyan, M., Parvez, L., Islam, M., Dampare, S., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Hazardous Materials, 173(1–3), 384–392. https://doi.org/10.1016/j.jhazmat.2009.08.085

    Article  CAS  Google Scholar 

  • Bilguun, U., Namkhainyambuu, D., Purevsuren, B., Soyol-Erdene, T. O., Tuuguu, E., & Daichaa, D. (2020). Sources, enrichment, and geochemical fractions of soil trace metals in Ulaanbaatar, Mongolia. Archives of Environmental Contamination and Toxicology, 79(2), 219–232. https://doi.org/10.1007/s00244-020-00748-5

    Article  CAS  Google Scholar 

  • Bojórquez-Sánchez, S., Marmolejo-Rodríguez, A., Ruiz-Fernández, A., Sánchez-González, A., Sánchez-Cabeza, J., Bojórquez-Leyva, H. & Pérez-Bernal, L. (2018). Enriquecimiento natural de níquel y vanadio en núcleos de sedimento cercanos a sitios de extracción de crudo en el golfo de México. Revista internacional de contaminación ambiental, 34(4), 713–723. https://doi.org/10.20937/rica.2018.34.04.12

  • Brack, A., Ipenza, C., Alvarez, J., & Sotero, V. (2011). Minería Aurífera en Madre de Dios y Contaminación con Mercurio – Una Bomba de Tiempo. Ministerio del Ambiente. Retrieved October 15, 2019, from https://bit.ly/2FzDrOU

  • Brown, L., Pavich, M. J., Hickman, R. E., Klein, J., & Middleton, R. (1988). Erosion of the eastern United States observed with 10Be. Earth Surface Processes and Landforms, 13(5), 441–457. https://doi.org/10.1002/esp.3290130509

    Article  CAS  Google Scholar 

  • Cai, L., Xu, Z., Ren, M., Guo, Q., Hu, X., Hu, G., & Peng, P. (2012). Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicology and Environmental Safety, 78, 2–8. https://doi.org/10.1016/j.ecoenv.2011.07.004

    Article  CAS  Google Scholar 

  • Cai, L., Wang, Q., Wen, H., Luo, J., & Wang, S. (2019). Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicology and Environmental Safety, 168, 184–191. https://doi.org/10.1016/j.ecoenv.2018.10.092

    Article  CAS  Google Scholar 

  • Calao-Ramos, C., Bravo, A. G., Paternina-Uribe, R., Marrugo-Negrete, J., & Díez, S. (2021). Occupational human exposure to mercury in artisanal small-scale gold mining communities of Colombia. Environment International, 146, 106216. https://doi.org/10.1016/j.envint.2020.106216

    Article  CAS  Google Scholar 

  • Carlotto, V. S., Acosta, H., Mamani, M. I., Cerpa, L. M., Rodríguez, R., Jaimes, F., Navarro, P.A., Cueva, E., & Chacaltana, C. A. (2010). Los dominios geotectónicos del territorio peruano. Retrieved July 28, 2022, from https://bit.ly/3cHIHmQ

  • Cartró-Sabaté, M., Mayor, P., Orta-Martínez, M., & Rosell-Melé, A. (2019). Anthropogenic lead in Amazonian wildlife. Nat Sustain, 2(8), 702–709. https://doi.org/10.1038/s41893-019-0338-7

    Article  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment). (2007). Canadian soil quality guidelines for the protection of environmental and human health: Summary tables. ISBN 1–896997–34–1. Retrieved August 16, 2021, from https://bit.ly/3cGFIek

  • Chandrasekaran, A., Ravisankar, R., Harikrishnan, N., Satapathy, K., Prasad, M., & Kanagasabapathy, K. (2015). Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India-Spectroscopical approach. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 137, 589–600. https://doi.org/10.1016/j.saa.2014.08.093

    Article  CAS  Google Scholar 

  • Chesworth, W. (1991). Geochemistry of micronutrients. Micronutrients in Agriculture. https://doi.org/10.2136/sssabookser4.2ed.c1

    Article  Google Scholar 

  • Crozier, J. (2012). Heavy metals in cocoa. International workshop on possible EU regulations on cadmium in cocoa and chocolate products. Nature and Food Quality in the Netherlands (NLV), the European Cocoa Association (ECA) & CAOBISCO. https://bit.ly/3QcGkGh

  • Damdinova, L. B., Damdinov, B. B., Rampilov, M. O., & Kanakin, S. V. (2019). Ore formation conditions of the Aunik F-Be deposit (Western Transbaikalia). Geology of Ore Deposits, 61(1), 14–37. https://doi.org/10.1134/S1075701519010021

    Article  Google Scholar 

  • Dastoor, A., Angot, H., Bieser, J., Christensen, J. H., Douglas, T. A., Heimbürger-Boavida, L. E., & Zdanowicz, C. (2022). Arctic mercury cycling. Nature Reviews Earth & Environment, 3(4), 270–286. https://doi.org/10.1038/s43017-022-00269-w

    Article  CAS  Google Scholar 

  • Davis, H. T., Marjorie Aelion, C., McDermott, S., & Lawson, A. B. (2009). Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation. Environmental Pollution, 157(8–9), 2378–2385. https://doi.org/10.1016/j.envpol.2009.03.021

    Article  CAS  Google Scholar 

  • de Carvalho, M., Panosso, A., Ribeiro Teixeira, E. E., Araújo, E. G., Brancaglioni, V. A., & Dallacort, R. (2018). Multivariate approach of soil attributes on the characterization of land use in the southern Brazilian Amazon. Soil and Tillage Research, 184, 207–215. https://doi.org/10.1016/j.still.2018.08.004

    Article  Google Scholar 

  • de Souza, A., da Costa, M., Ramos, S., & Dall’Agnol, R., & Fernandes, A. (2021). Environmental impact of potentially toxic elements on tropical soils used for large-scale crop commodities in the Eastern Amazon. Brazil. Minerals, 11(9), 990. https://doi.org/10.3390/min11090990

    Article  CAS  Google Scholar 

  • do Nascimento, C. W. A., Lima, L. H. V., da Silva, F. L., Biondi, C. M., & Campos, M. C. C. (2018). Natural concentrations and reference values of heavy metals in sedimentary soils in the Brazilian Amazon. Environmental Monitoring and Assessment, 190(10). https://doi.org/10.1007/s10661-018-6989-4

  • Dogra, N., Sharma, M., Sharma, A., Keshavarzi, A., Minakshi, B., & R., Kumar, A., & Kumar, V. (2019). Pollution assessment and spatial distribution of roadside agricultural soils: A case study from India. International Journal of Environmental Health Research, 30(2), 146–159. https://doi.org/10.1080/09603123.2019.1578865

    Article  CAS  Google Scholar 

  • Dong, B., Zhang, R., Gan, Y., Cai, L., Freidenreich, A., Wang, K., Guo, T., & Wang, H. (2019). Multiple methods for the identification of heavy metal sources in cropland soils from a resource-based region. Science of the Total Environment, 651, 3127–3138. https://doi.org/10.1016/j.scitotenv.2018.10.130

    Article  CAS  Google Scholar 

  • Dórea, J. G. (2021). Neurodevelopment and exposure to neurotoxic metal (loid) s in environments polluted by mining, metal scrapping and smelters, and e-waste recycling in low and middle-income countries. Environmental Research, 197, 111124. https://doi.org/10.1016/j.envres.2021.111124

    Article  CAS  Google Scholar 

  • Dragović, S., Mihailović, N., & Gajić, B. (2008). Heavy metals in soils: Distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere, 72(3), 491–495. https://doi.org/10.1016/j.chemosphere.2008.02.063

    Article  CAS  Google Scholar 

  • Dutta, N., Dutta, S., Bhupenchandra, I., Karmakar, R. M., Das, K. N., Singh, L. K., Bordoloi, A., & Sarmah, T. (2021). Assessment of heavy metal status and identification of source in soils under intensive vegetable growing areas of Brahmaputra valley, North East India. Environmental Monitoring and Assessment, 193(6), 1–18. https://doi.org/10.1007/s10661-021-09168-x

    Article  CAS  Google Scholar 

  • Ebunu, A. I., Olanrewaju, Y. A., Ogolo, O., Adetunji, A. R., & Onwualu, A. P. (2021). Barite as an industrial mineral in Nigeria: Occurrence, utilization, challenges and future prospects. Heliyon, 7(6), e07365. https://doi.org/10.1016/j.heliyon.2021.e07365

    Article  CAS  Google Scholar 

  • ERM Perú, S.A. (2021). Plan de Rehabilitación del Área Afectada por el derrame de petróleo reportado a la altura del km 193 del Tramo ORN del Oleoducto NorPeruano. Términos de Referencia. Retrieved June 21, 2022, from https://bit.ly/3pEhxjH

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114(3), 313–324. https://doi.org/10.1016/S0269-7491(00)00243-8

    Article  CAS  Google Scholar 

  • Fei, X., Lou, Z., Xiao, R., Ren, Z., & Lv, X. (2020). Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models. Science of the Total Environment, 747, 141293. https://doi.org/10.1016/j.scitotenv.2020.141293

    Article  CAS  Google Scholar 

  • Figueiredo, B., de Campos, A., da Silva, R., & Hoffman, N. (2018). Mercury sink in Amazon rainforest: Soil geochemical data from the Tapajos National Forest, Brazil. Environmental Earth Sciences, 77(8). https://doi.org/10.1007/s12665-018-7471-x

  • Franco-Uría, A., López-Mateo, C., Roca, E., & Fernández-Marcos, M. (2009). Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. Hazardous Materials, 165(1–3), 1008–1015. https://doi.org/10.1016/j.jhazmat.2008.10.118

    Article  CAS  Google Scholar 

  • García, F., Brios, A., & Guillermo, Z. (2015). Informe de determinación de niveles de fondo y niveles de referencia en tres asociaciones de suelo del departamento de Loreto, ejecutado durante el año 2015. Retrieved August 23, 2019, from https://bit.ly/3D8eTuz

  • Gerson, J. R., Szponar, N., Zambrano, A. A., Bergquist, B., Broadbent, E., Driscoll, C. T., & Bernhardt, E. S. (2022). Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining. Nature communications, 13(1), 1–10.https://doi.org/10.1038/s41467-022-27997-3

  • Goodfellow, C. (2021). A spotlight-on Copper-Beryllium. Retrieved June 21, 2022, from https://bit.ly/3QQOzZE

  • Guan, Q., Wang, F., Xu, C., Pan, N., Lin, J., Zhao, R., & Luo, H. (2018). Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere, 193, 189–197. https://doi.org/10.1016/j.chemosphere.2017.10.151

    Article  CAS  Google Scholar 

  • Hani, A., & Pazira, E. (2011). Heavy metals assessment and identification of their sources in agricultural soils of Southern Tehran. Iran. Environmental Monitoring and Assessment, 176(1), 677–691. https://doi.org/10.1007/s10661-010-1612-3

    Article  CAS  Google Scholar 

  • Hu, B., Jia, X., Hu, J., Xu, D., Xia, F., & Li, Y. (2017). Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China. International Journal of Environmental Research and Public Health, 14(9), 1042. https://doi.org/10.3390/ijerph14091042

    Article  CAS  Google Scholar 

  • Huamaní-Yupanqui, H.A., Huauya-Rojas, M.A., Mansilla-Minaya, L.G., Florida-Rofner, N., & Neira-Trujillo, G.M. (2012). Presencia de metales pesados en cultivo de cacao (Theobroma cacao L.) orgánico. Acta Agronómica, 61(4), 339–344. Retrieved December 20, 2020, from https://bit.ly/3RvOGtD

  • Husson, F., Josse, J., Le, S., & Mazet, J. (2020). Package FactoMineR: Multivariate exploratory data analysis and data mining. Version 2.4. Retrieved July 06, 2021, from https://bit.ly/3TOjlEH

  • IIAP (Instituto de Investigaciones de la Amazonía Peruana). (2006). Estrategia Regional de Diversidad Biológica de Ucayali. Retrieved July 20, 2019, from https://bit.ly/3KEc0TV

  • IIAP (Instituto de Investigaciones de la Amazonía Peruana). (2007). Estudios temáticos para zonificación ecológica y económica del departamento de San Martín – Geología. Retrieved July 24, 2019, from https://bit.ly/3KEc5qH

  • IIAP (Instituto de Investigaciones de la Amazonía Peruana). (2008). Evaluación de metales pesados procedentes del botadero municipal en el año 2008. Instituto de Investigaciones de la Amazonia Peruana. Informe técnico. 14p.

  • IIAP (Instituto de Investigaciones de la Amazonía Peruana). (2010). Zonificación ecológica y económica del departamento de Amazonas – Geología. Retrieved July 28, 2019, from https://bit.ly/3wLUlUs

  • INEI (Instituto Nacional de estadística e informática). (2020). PBI de los departamentos, según actividades económicas 2007 - 2020. Retrieved January 01, 2021, from https://bit.ly/3q3CBjw

  • INGEMMET (Instituto Geológico Minero y Metalúrgico). (2006). Informe de zonas críticas de la región Ucayali. Primer Reporte. Instituto Geológico, Minero y Metalúrgico. Retrieved August 03, 2019, from https://bit.ly/3QiZZ7G

  • INGEMMET (Instituto Geológico Minero y Metalúrgico). (2008). Riesgos Geológicos en la Región Ucayali. Boletín No 37 Serie C Geodinámica e Ingeniería Geológica. Retrieved May 29, 2022, from https://bit.ly/3RymTZM

  • INGEMMET (Instituto Geológico Minero y Metalúrgico). (2009). Riesgo Geológico en la Región Amazonas. Boletín N o 39 Serie C Geodinámica e Ingeniería Geológica. Retrieved May 29, 2022, from https://bit.ly/3KIqxh6

  • INGEMMET (Instituto Geológico Minero y Metalúrgico). (2010). Riesgo Geológico en la Región San Martín. Boletín N o 42 Serie C Geodinámica e Ingeniería Geológica. Retrieved May 29, 2022, from https://bit.ly/3qo8vI1

  • INGEMMET (Instituto Geológico Minero y Metalúrgico). (2017). Peligro Geológico en la Región Loreto. Boletín Serie C: Geodinámica e Ingeniería Geológica. Instituto Geológico, Minero y Metalúrgico. Retrieved August 05, 2020, from https://bit.ly/3Q5Q19j

  • INGEMMET (Instituto Geológico Minero y Metalúrgico). (2018). Prospección geológica-minera regional en la región San Martín. Retrieved May 28, 2022, from https://bit.ly/3B7Tksz

  • INGEMMET (Instituto Geológico Minero y Metalúrgico). (2019a). Peligro Geológico en la Región Loreto. Boletín N o 42 Serie C Geodinámica e Ingeniería Geológica. Retrieved May 28, 2022, from https://bit.ly/3q3q1kn

  • INGEMMET (Instituto Geológico Minero y Metalúrgico). (2019b). Prospección geológica minera regional en la región Amazonas. Retrieved May 28, 2022, from https://bit.ly/3Tzd7br

  • INGEMMET (Instituto Geológico Minero y Metalúrgico). (2020). Geoquímica Nacional de Suelos en la Llanura Amazónica, Proyecto GE36A-6 (2019). Catálogo Nacional de Metadatos del Perú. Retrieved February 08, 2021, from https://bit.ly/3AMHZOu

  • Islam, M. R., Sanderson, P., Payne, T. E., Johansen, M. P., & Naidu, R. (2021). Desorption and migration behavior of beryllium from contaminated soils: Insights for risk-based management. ACS Omega, 6(45), 30686–30697. https://doi.org/10.1021/acsomega.1c04572

    Article  CAS  Google Scholar 

  • Kabir, E., Ray, S., Kim, K. H., Yoon, H. O., Jeon, E. C., Kim, Y. S., Cho, Y. S., Yun, S. T., & Brown, R. J. C. (2012). Current status of trace metal pollution in soils affected by industrial activities. The Scientific World Journal, 2012, 1–18. https://doi.org/10.1100/2012/916705

    Article  CAS  Google Scholar 

  • Kahhat, R., Parodi, E., Larrea-Gallegos, G., Mesta, C., & Vázquez-Rowe, I. (2019). Environmental impacts of the life cycle of alluvial gold mining in the Peruvian Amazon rainforest. Science of the Total Environment, 662, 940–951. https://doi.org/10.1016/j.scitotenv.2019.01.246

    Article  CAS  Google Scholar 

  • Kassambara, A., & Mundt, F. (2020). Package factoextra: Extract and visualize the results of multivariate data analyses. Version 1.0.7. Retrieved January 10, 2021, from https://bit.ly/3RyuPtF

  • Keshavarzi, A., & Kumar, V. (2018). Ecological risk assessment and source apportionment of heavy metal contamination in agricultural soils of Northeastern Iran. International Journal of Environmental Health Research, 29(5), 544–560. https://doi.org/10.1080/09603123.2018.1555638

    Article  CAS  Google Scholar 

  • Kim, J. H., Sohn, J. I., & Oh, S. Y. (2020). Environmental monitoring of toxic metals in roadside soil and dust in Ulsan, South Korea: Pollution evaluation and distribution characteristics. Environmental Monitoring and Assessment, 192(12), 1–14. https://doi.org/10.1007/s10661-020-08745-w

    Article  CAS  Google Scholar 

  • Kumar, V., Sharma, A., Kaur, P., Sidhu, G. P. S., Bali, A. S., Bhardwaj, R., & Cerda, A. (2019). Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere, 216, 449–462. https://doi.org/10.1016/j.chemosphere.2018.10.066

    Article  CAS  Google Scholar 

  • Kumar, V., Pandita, S., Sharma, A., Bakshi, P., Sharma, P., Karaouzas, I., & Cerda, A. (2021a). Ecological and human health risks appraisal of metal (loid) s in agricultural soils: A review. Geology, Ecology, and Landscapes, 5(3), 173–185. https://doi.org/10.1080/24749508.2019.1701310

    Article  Google Scholar 

  • Kumar, V., Sihag, P., Keshavarzi, A., Pandita, S., & Rodríguez-Seijo, A. (2021b). Soft computing techniques for appraisal of potentially toxic elements from Jalandhar (Punjab). India. Applied Sciences, 11(18), 8362. https://doi.org/10.3390/app11188362

    Article  CAS  Google Scholar 

  • Kumar, V., Pandita, S., & Setia, R. (2022). A meta-analysis of potential ecological risk evaluation of heavy metals in sediments and soils. Gondwana Research., 103, 487–501. https://doi.org/10.1016/j.gr.2021.10.028

    Article  CAS  Google Scholar 

  • León, A., & Zúñiga, M. (2020). La sombra del petróleo. Informe de los derrames petroleros en la Amazonía peruana entre el 2000 y el 2019. Retrieved March 15, 2021, from https://bit.ly/3pbQ7lJ

  • Li, J., He, M., Han, W., & Gu, Y. (2009). Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods. Hazardous Materials, 164(2–3), 976–981. https://doi.org/10.1016/j.jhazmat.2008.08.112

    Article  CAS  Google Scholar 

  • Li, W., & Achal, V. (2020). Environmental and health impacts due to e-waste disposal in China–a review. Science of the Total Environment, 737, 139745. https://doi.org/10.1016/j.scitotenv.2020.139745

    Article  CAS  Google Scholar 

  • Li, X., Liu, H., Meng, W., Liu, N., & Wu, P. (2022). Accumulation and source apportionment of heavy metal (loid) s in agricultural soils based on GIS, SOM and PMF: A case study in superposition areas of geochemical anomalies and zinc smelting, Southwest China. Process Safety and Environmental Protection, 159, 964–977. https://doi.org/10.1016/j.psep.2022.01.072

    Article  CAS  Google Scholar 

  • Liu, H., Zhang, Y., Zhou, X., You, X., Shi, Y., & Xu, J. (2017). Source identification and spatial distribution of heavy metals in tobacco-growing soils in Shandong province of China with multivariate and geostatistical analysis. Environmental Science and Pollution Research, 24(6), 5964–5975. https://doi.org/10.1007/s11356-016-8229-1

    Article  CAS  Google Scholar 

  • Liu, H., Zhang, Y., Yang, J., Wang, H., Li, Y., Shi, Y., & Hu, W. (2021). Quantitative source apportionment, risk assessment and distribution of heavy metals in agricultural soils from southern Shandong Peninsula of China. Science of the Total Environment, 767, 144879. https://doi.org/10.1016/j.scitotenv.2020.144879

    Article  CAS  Google Scholar 

  • Londoño-Franco, L. F., Londoño-Muñoz, P. T., & Muñoz-García, F. G. (2016). Los riesgos de los metales pesados en la salud humana y animal. Biotecnología en el Sector Agropecuario y Agroindustrial, 14(2), 145. https://doi.org/10.18684/bsaa(14)145-153

  • Lu, X., Li, L. Y., Wang, L., Lei, K., Huang, J., & Zhai, Y. (2009). Contamination assessment of mercury and arsenic in roadway dust from Baoji. China. Atmospheric Environment, 43(15), 2489–2496. https://doi.org/10.1016/j.atmosenv.2009.01.048

    Article  CAS  Google Scholar 

  • Luo, X. S., Xue, Y., Wang, Y. L., Cang, L., Xu, B., & Ding, J. (2015). Source identification and apportionment of heavy metals in urban soil profiles. Chemosphere, 127, 152–157. https://doi.org/10.1016/j.chemosphere.2015.01.048

    Article  CAS  Google Scholar 

  • Lv, J., Liu, Y., Zhang, Z., Dai, J., Dai, B., & Zhu, Y. (2015). Identifying the origins and spatial distributions of heavy metals in soils of Ju country (Eastern China) using multivariate and geostatistical approach. Soils and Sediments, 15(1), 163–178. https://doi.org/10.1007/s11368-014-0937-x

    Article  CAS  Google Scholar 

  • Malkani, M. S. (2020). Cement resources, agrominerals, construction, marble, dimension and decor stone resources, gemstone and jewelry resources of Pakistan. Open Journal of Geology, 10(8), 900–942. https://doi.org/10.4236/ojg.2020.108041

    Article  CAS  Google Scholar 

  • Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380–388. https://doi.org/10.1016/j.envres.2017.01.021

    Article  CAS  Google Scholar 

  • Matschullat, J., Martins, G. C., Enzweiler, J., von Fromm, S. F., van Leeuwen, J., de Lima, R. M. B., & Zurba, K. (2020). What influences upland soil chemistry in the Amazon basin, Brazil? Major, minor and trace elements in the upper rhizosphere. Journal of Geochemical Exploration, 211, 106433. https://doi.org/10.1016/j.gexplo.2019.106433

    Article  CAS  Google Scholar 

  • Mendoza-Escalona, B., Torres-Rodríguez, D., Marcó, L. M., Gómez, C., Estanga-Barrios, M., & García-Orellana, Y. (2021). Concentración de metales pesados en suelos agrícolas bajo diferentes sistemas de labranza. TecnoLógicas, 24(51), 4–15. https://doi.org/10.22430/22565337.1738

  • Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65(5), 863–872. https://doi.org/10.1016/j.chemosphere.2006.03.016

    Article  CAS  Google Scholar 

  • MIDAGRI (Ministerio de Desarrollo Agrario y Riego). (2021a). Agricultura y Deforestación en la Amazonía Peruana. Retrieved July 23, 2021a, from https://maaproject.org/2021a/deforestacion-agricultura-peru/

  • MIDAGRI (Ministerio de Desarrollo Agrario y Riego). (2021b). Atlas de la superficie agrícola del Perú. Retrieved June 21, 2022, from https://bit.ly/3AI9mcn

  • Miller, J. R., Hudson-Edwards, K. A., Lechler, P. J., Preston, D., & Macklin, M. G. (2004). Heavy metal contamination of water, soil and produce within riverine communities of the Rio Pilcomayo basin. Bolivia. Science of the Total Environment, 320(2–3), 189–209. https://doi.org/10.1016/j.scitotenv.2003.08.011

    Article  CAS  Google Scholar 

  • MINAM (Ministerio del Ambiente). (2017). Estándares de Calidad Ambiental (ECA) para Suelos. D.S. N° 002–2013-MINAM. Ministerio del Ambiente. Retrieved September 16, 2017, from https://bit.ly/3wRRyt3

  • MINAM (Ministerio del Ambiente). (2019). Mapa Nacional de Ecosistemas del Perú - Memoria Descriptiva. Ministerio del Ambiente: 1–119. Retrieved August 14, 2020, from https://bit.ly/3RdTwMg

  • Mora, A., Jumbo-Flores, D., González-Merizalde, M., Bermeo-Flores, S., Alvarez-Figueroa, P., Mahlknecht, J., & Hernández-Antonio, A. (2019). Heavy metal enrichment factors in fluvial sediments of an Amazonian basin impacted by gold mining. Bulletin of Environmental Contamination and Toxicology, 102(2), 210–217. https://doi.org/10.1007/s00128-019-02545-w

    Article  CAS  Google Scholar 

  • MTC (Ministerio de Transportes y Comunicaciones). (2018). Shapefiles de vías nacionales, departamentales y vecinales. Retrieved July 28, 2022, from https://bit.ly/3KGZEua

  • Muller, G. (1979). Schwermetalle in den sediments des Rheins-Veran-derungen seitt 1971. Umschan, 79, 778–783.

    Google Scholar 

  • Nanos, N., & Rodríguez, J. A. (2012). Multiscale analysis of heavy metal contents in soils: Spatial variability in the Duero river basin (Spain). Geoderma, 189–190, 554–562. https://doi.org/10.1016/j.geoderma.2012.06.006

    Article  CAS  Google Scholar 

  • Napi, N. N. L. M., Mohamed, M. S. N., Abdullah, S., Mansor, A. A., Ahmed, A. N., & Ismail, M. (2020). Multiple linear regression (MLR) and principal component regression (PCR) for ozone (O3) concentrations prediction. In IOP Conference Series: Earth and Environmental Science, 616 (1), 012004). IOP Publishing. https://doi.org/10.1088/1755-1315/616/1/012004

  • Nawrot, N., Wojciechowska, E., Rezania, S., Walkusz-Miotk, J., & Pazdro, K. (2020). The effects of urban vehicle traffic on heavy metal contamination in road sweeping waste and bottom sediments of retention tanks. Science of the Total Environment, 749, 141511. https://doi.org/10.1016/j.scitotenv.2020.141511

    Article  CAS  Google Scholar 

  • Noulas, C., Tziouvalekas, M., & Karyotis, T. (2018). Zinc in soils, water and food crops. Trace Elements in Medicine and Biology, 49, 252–260. https://doi.org/10.1016/j.jtemb.2018.02.009

    Article  CAS  Google Scholar 

  • O’Callaghan-Gordo, C., Flores, J. A., Lizárraga, P., Okamoto, T., Papoulias, D. M., Barclay, F., Orta-Martínez, M., Kogevinas, M., & Astete, J. (2018). Oil extraction in the Amazon basin and exposure to metals in indigenous populations. Environmental Research, 162, 226–230. Retrieved June 21, 2022, from https://doi.org/10.1016/j.envres.2018.01.013

  • O’Callaghan-Gordo, C., Rosales, J., Lizárraga, P., Barclay, F., Okamoto, T., Papoulias, D. M., Espinosa, A., Orta-Martinez, M., Kogevinas, M., & Astete, J. (2021). Blood lead levels in indigenous peoples living close to oil extraction areas in the Peruvian Amazon. Environment International, 154, 106639. https://doi.org/10.1016/j.envint.2021.106639

    Article  CAS  Google Scholar 

  • OEFA (Organismo de evaluación y fiscalización ambiental). (2021). Aplicación Web GIS para la consulta del Inventario nacional de áreas degradadas por residuos sólidos municipales. Retrieved October 09, 2021, from https://bit.ly/3pGXS2n

  • Oestreicher, J., Lucotte, M., Moingt, M., Bélanger, E., Rozon, C., Davidson, R., Mertens, F., & Romaña, C. (2017). Environmental and anthropogenic factors influencing Mercury dynamics during the past century in floodplain lakes of the Tapajós River, Brazilian Amazon. Archives of Environmental Contamination and Toxicology, 72, 11–30. https://doi.org/10.1007/s00244-016-0325-1

    Article  CAS  Google Scholar 

  • Olivero-Verbel, J., Alvarez-Ortega, N., Alcala-Orozco, M., & Caballero-Gallardo, K. (2021). Population exposure to lead and mercury in Latin America. Current Opinion in Toxicology, 27, 27–37. https://doi.org/10.1016/j.cotox.2021.06.002

    Article  CAS  Google Scholar 

  • Panagos, P., Ballabio, C., Lugato, E., Jones, A., Borrelli, P., Scarpa, S., Orgiazzi, A., & Montanarella, L. (2018). Potential sources of anthropogenic copper inputs to European agricultural soils. Sustainability, 10(7), 2380. https://doi.org/10.3390/su10072380

    Article  CAS  Google Scholar 

  • Portenga, E. W., Bierman, P. R., Trodick, C. D., Greene, S. E., DeJong, B. D., Rood, D. H., & Pavich, M. J. (2019). Erosion rates and sediment flux within the Potomac River basin quantified over millennial timescales using beryllium isotopes. GSA Bulletin, 131(7–8), 1295–1311. https://doi.org/10.1130/B31840.1

    Article  CAS  Google Scholar 

  • Quispe, C. A., & Silvestre, N. (2019). Nivel de concentración de metales pesados en relación a los estándares de calidad ambiental (ECAs-Suelo), en el suelo del área de influencia directa del botadero de Pampachara, Distrito, Provincia y Departamento de Huancavelica. Tesis para optar el Título Profesional de Ingeniero Ambiental. Retrieved January 10, 2020, from https://bit.ly/3Qad3vO

  • R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved December 22, 2021, from https://www.R-project.org/.

  • Radziemska, M., & Fronczyk, J. (2015). Level and contamination assessment of soil along an expressway in an ecologically valuable area in Central Poland. International Journal of Environmental Research and Public Health, 12, 13372–13387. https://doi.org/10.3390/ijerph121013372

    Article  CAS  Google Scholar 

  • RAISG (Red Amazónica de Información Socioambiental Georreferenciada). (2020). Minería Ilegal. Retrieved July 08, 2022, from https://bit.ly/3e5kW8r

  • Rehman, M., Liu, L., Wang, Q., Saleem, M. H., Bashir, S., Ullah, S., & Peng, D. (2019). Copper environmental toxicology, recent advances, and future outlook: A review. Environmental Science and Pollution Research, 26(18), 18003–18016. https://doi.org/10.1007/s11356-019-05073-6

    Article  CAS  Google Scholar 

  • Revelle, W. (2021). Package ‘psych’: Procedures for psychological, psychometric, and personality research. Version 2.1.9. Retrieved July 10, 2021, from https://bit.ly/3cAzInz

  • Rodrigues, Y. O., Dórea, J. G., Landim, P. M. B., Bernardi, J. V. E., Monteiro, L. C., de Souza, J. P. R., & de Souza, J. R. (2022). Mercury spatiality and mobilization in roadside soils adjacent to a savannah ecological reserve. Environmental Research, 205, 112513. https://doi.org/10.1016/j.envres.2021.112513

    Article  CAS  Google Scholar 

  • Rodríguez, J. A., Arias, M. L., & Grau, J. M. (2006). Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environmental Pollution, 144(3), 1001–1012. https://doi.org/10.1016/j.envpol.2006.01.045

  • Rosario, L. I. (2020). Afectación del suelo por metales pesados: plomo, cadmio y cromo vi por la disposición de residuos sólidos municipales en el botadero de Carhuashjirca, en el distrito y provincia de Huaraz, departamento de Ancash, 2019. Retrieved July 31, 2022, from https://bit.ly/3RwyaK0

  • Rosell-Melé, A., Moraleda-Cibrián, N., Cartró-Sabaté, M., Colomer-Ventura, F., Mayor, P., & Orta-Martínez, M. (2018). Oil pollution in soils and sediments from the Northern Peruvian Amazon. Science of the Total Environment, 610–611, 1010–1019. https://doi.org/10.1016/j.scitotenv.2017.07.208

    Article  CAS  Google Scholar 

  • Sahoo, P. K., & Dall’Agnol, R., Salomão, G. N., da Silva Ferreira Junior, J., da Silva, M. S., Martins, G. C., E Souza Filho, P. W. M., Powell, M. A., Maurity, C. W., Angelica, R. S., da Costa, M. F., & Siqueira, J. O. (2019). Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: A high density sampling survey in the Parauapebas basin. Brazilian Amazon. Environmental Geochemistry and Health, 42(1), 255–282. https://doi.org/10.1007/s10653-019-00345-z

    Article  CAS  Google Scholar 

  • Salinas, M. (2007). Impactos económicos y ambientales de la pequeña minería artesanal en el departamento de Madre de Dios (Doctoral dissertation, Tesis Lic. Econ. UNALM. Perú). Retrieved April 26, 2019, from https://bit.ly/3srjG4H

  • Schmidt, A. H., Gonzalez, V. S., Bierman, P. R., Neilson, T. B., & Rood, D. H. (2018). Agricultural land use doubled sediment loads in western China’s rivers. Anthropocene, 21, 95–106. https://doi.org/10.1016/j.ancene.2017.10.002

    Article  Google Scholar 

  • SENACE (Servicio Nacional de Certificación Ambiental para las Inversiones Sostenibles). (2021). Geosenace - Portal de Servicios de Información Georreferenciada. Retrieved September 19, 2021, from https://bit.ly/3Qadwhy

  • SENAMHI (Servicio Nacional de Meteorología e Hidrología del Perú). (2021a). Atlas de temperaturas del aire y precipitación del Perú. Retrieved August 10, 2021, from https://bit.ly/3RrPwaT

  • SENAMHI (Servicio Nacional de Meteorología e Hidrología del Perú). (2021b). Climas del Perú. Mapa de Clasificación Climática Nacional. Retrieved July 10, 2022, from https://bit.ly/3RdqyML

  • Setia, R., Dhaliwal, S. S., Singh, R., Kumar, V., Taneja, S., Kukal, S. S., & Pateriya, B. (2021). Phytoavailability and human risk assessment of heavy metals in soils and food crops around Sutlej river. India. Chemosphere, 263, 128321. https://doi.org/10.1016/j.chemosphere.2020.128321

    Article  CAS  Google Scholar 

  • Shafer, M. M., Toner, M., Overdier, B., et al. (2012). Chemical speciation of vanadium in particulate matter emitted from diesel vehicles and urban atmospheric aerosols. Environmental Science and Technology, 46, 189–195. https://doi.org/10.1021/es200463c

    Article  CAS  Google Scholar 

  • Shammi, S. A., Salam, A., Khan, M., & Hossain, A. (2021). Assessment of heavy metal pollution in the agricultural soils, plants, and in the atmospheric particulate matter of a suburban industrial region in Dhaka. Bangladesh. Environmental Monitoring and Assessment, 193(2), 1–12. https://doi.org/10.1007/s10661-021-08848-y

    Article  CAS  Google Scholar 

  • Simon, Q., Ledru, M. P., Sawakuchi, A. O., Favier, C., Mineli, T. D., Grohmann, C. H., & ASTER Team. (2020). Chronostratigraphy of a 1.5±0.1 Ma composite sedimentary record from Colônia basin (SE Brazil): Bayesian modeling based on paleomagnetic, authigenic 10Be/9Be, radiocarbon and luminescence dating. Quaternary Geochronology, 58, 101081. https://doi.org/10.1016/j.quageo.2020.101081

  • Singh, S., Raju, N. J., & Nazneen, S. (2015). Environmental risk of heavy metal pollution and contamination sources using multivariate analysis in the soils of Varanasi environs. India. Environmental Monitoring and Assessment, 187, 345. https://doi.org/10.1007/s10661-015-4577-4

    Article  CAS  Google Scholar 

  • Siqueira, G. W., Aprile, F., Irion, G., & Braga, E. S. (2018). Mercury in the Amazon basin: Human influence or natural geological pattern? South American Earth Sciences, 86, 193–199. https://doi.org/10.1016/j.jsames.2018.06.017

    Article  CAS  Google Scholar 

  • Sotero-Solís, V., & Alva-Astudillo, M. (2013). Contenido de metales pesados en agua y sedimento en el bajo Nanay. Ciencia Amazónica (Iquitos), 3(1), 24–32. https://doi.org/10.22386/ca.v3i1.49

  • Soto-Benavente, M., Rodriguez-Achata, L., Olivera, M., Arostegui, V., Colina, C., & Garate, J. (2020). Riesgos para la salud por metales pesados en productos agrícolas cultivados en áreas abandonadas por la minería aurífera en la Amazonía peruana. Scientia Agropecuaria, 11(1), 49–59. https://doi.org/10.17268/sci.agropecu.2020.01.06

  • Souza, C. M. P. D., Thomazini, A., Schaefer, C. E. G. R., Veloso, G. V., Moreira, G. M., & Fernandes, E. I. (2018). Multivariate analysis and machine learning in properties of Ultisols (Argissolos) of Brazilian Amazon. Revista Brasileira De Ciência Do Solo. https://doi.org/10.1590/18069657rbcs20170419

    Article  Google Scholar 

  • Squillante, G. (2003). Relación entre áreas de trabajo y efectos a la salud en una empresa minera de Venezuela. Mapfre Medicina, 14(1), 19–25. https://sid-inico.usal.es/idocs/F8/8.2.6-6139/relacionentre.pdf

  • SRT (Superintendencia de Riesgos del Trabajo). (2019). Exposición al Berilio. Retrieved June 21, 2022, from https://bit.ly/3dX6fV6

  • Sultan, K., & Shazili, N. A. (2009). Rare earth elements in tropical surface water, soil and sediments of the Terengganu River Basin. Malaysia. Rare Earths, 27(6), 1072–1078. https://doi.org/10.1016/s1002-0721(08)60391-9

    Article  Google Scholar 

  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu. Hawaii. Environmental Geology, 39(6), 611–627. https://doi.org/10.1007/s002540050473

    Article  CAS  Google Scholar 

  • Taati, A., Salehi, M. H., Mohammadi, J., Mohajer, R., & Díez, S. (2020). Pollution assessment and spatial distribution of trace elements in soils of Arak industrial area, Iran: Implications for human health. Environmental Research, 187, 109577. https://doi.org/10.1016/j.envres.2020.109577

    Article  CAS  Google Scholar 

  • Tabelin, C. B., Igarashi, T., Villacorte-Tabelin, M., Park, I., Opiso, E. M., Ito, M., & Hiroyoshi, N. (2018). Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Science of the Total Environment, 645, 1522–1553. https://doi.org/10.1016/j.scitotenv.2018.07.103

    Article  CAS  Google Scholar 

  • Tabelin, C. B., Silwamba, M., Paglinawan, F. C., Mondejar, A. J. S., Duc, H. G., Resabal, V. J., & Villacorte-Tabelin, M. (2020). Solid-phase partitioning and release-retention mechanisms of copper, lead, zinc and arsenic in soils impacted by artisanal and small-scale gold mining (ASGM) activities. Chemosphere, 260, 127574. https://doi.org/10.1016/j.chemosphere.2020.127574

    Article  CAS  Google Scholar 

  • Taylor, T. P., Ding, M., Ehler, D. S., Foreman, T. M., Kaszuba, J. P., & Sauer, N. N. (2003). Beryllium in the environment: A review. Environmental Science and Health, Part A, 38(2), 439–469. https://doi.org/10.1081/ESE-120016906

    Article  CAS  Google Scholar 

  • Teng, Y. G., Tuo, X. G., & Zhang, C. J. (2002). Applying geoaccumulation index to assess heavy metal pollution in sediment: Influence of different geochemical background. Environmental Science and Technology, 2, 7–9. https://bit.ly/3ecHZeg

  • Tepanosyan, G., Sahakyan, L., Belyaeva, O., Maghakyan, N., & Saghatelyan, A. (2017). Human health risk assessment and riskiest heavy metal origin identification in urban soils of Yerevan, Armenia. Chemosphere, 184, 1230–1240. https://doi.org/10.1016/j.chemosphere.2017.06.108

    Article  CAS  Google Scholar 

  • Torres, N. E. (2018). Evaluación de la concentración de metales pesados como As, Cu, Cd, Hg y Pb en el botadero de Cancharani de la ciudad de Puno. Tesis para optar el Título Profesional de Ingeniero Ambiental. Retrieved September 19, 2019, from https://bit.ly/3AOXjZM

  • Tumanyan, A. F., Tyutyuma, N. V., Bondarenko, A. N., & Shcherbakova, N. A. (2017). Influence of oil pollution on various types of soil. Chemistry and Technology of Fuels and Oils, 53(3), 369–376. https://doi.org/10.1007/s10553-017-0813-7

    Article  CAS  Google Scholar 

  • Ul-Saufie, A. Z., Yahaya, A. S., Ramli, N. A., Rosaida, N., & Hamid, H. A. (2013). Future daily PM10 concentrations prediction by combining regression models and feedforward backpropagation models with principle component analysis (PCA). Atmospheric Environment, 77, 621–630. https://doi.org/10.1016/j.atmosenv.2013.05.017

    Article  CAS  Google Scholar 

  • Varol, M., Sünbül, M. R., Aytop, H., & Yılmaz, C. H. (2020). Environmental, ecological and health risks of trace elements, and their sources in soils of Harran Plain. Turkey. Chemosphere, 245, 125592. https://doi.org/10.1016/j.chemosphere.2019.125592

    Article  CAS  Google Scholar 

  • Velásquez, M. G., Barrantes, J. A. G., Thomas, E., Gamarra Miranda, L. A., Pillaca, M., Tello Peramas, L. D., & Bazán Tapia, L. R. (2020). Heavy metals in alluvial gold mine spoils in the peruvian amazon. CATENA, 189, 104454. https://doi.org/10.1016/j.catena.2020.104454

    Article  CAS  Google Scholar 

  • Verma, F., Singh, S., Dhaliwal, S. S., Kumar, V., Kumar, R., Singh, J., & Parkash, C. (2021). Appraisal of pollution of potentially toxic elements in different soils collected around the industrial area. Heliyon, 7(10), e08122. https://doi.org/10.1016/j.heliyon.2021.e08122

    Article  CAS  Google Scholar 

  • Vesely, J., Norton, S. A., Skrivan, P., Majer, V., Kram, P., Navratil, T., & Kaste, J. M. (2002). Environmental chemistry of beryllium. Reviews in Mineralogy and Geochemistry, 50(1), 291–317. https://doi.org/10.2138/rmg.2002.50.7

    Article  CAS  Google Scholar 

  • Villena, H. C. (2017). Evaluación de la contaminación del agua del Río Chicama por metales de los Lixiviados del botadero del distrito de Casa Grande. Tesis para optar el Título Profesional de Ingeniero Ambiental. Retrieved December 18, 2018, from https://bit.ly/3B5dJhU

  • Wang, H., & Lu, S. (2011). Spatial distribution, source identification and affecting factors of heavy metals contamination in urban–suburban soils of Lishui city. China. Environmental Earth Sciences, 64(7), 1921–1929. https://doi.org/10.1007/s12665-011-1005-0

    Article  CAS  Google Scholar 

  • Wang, C., Zhao, L., Sun, W., Xue, J., & Xie, Y. (2018). Identifying redundant monitoring stations in an air quality monitoring network. Atmospheric Environment, 190, 256–268. https://doi.org/10.1016/j.atmosenv.2018.07.040

    Article  CAS  Google Scholar 

  • Wang, P., Li, Z., Liu, J., Bi, X., Ning, Y., Yang, S., & Yang, X. (2019). Apportionment of sources of heavy metals to agricultural soils using isotope fingerprints and multivariate statistical analyses. Environmental Pollution, 249, 208–216. https://doi.org/10.1016/j.envpol.2019.03.034

    Article  CAS  Google Scholar 

  • Wang, Y., Duan, X., & Wang, L. (2020). Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province. Science of the Total Environment, 710, 134953. https://doi.org/10.1016/j.scitotenv.2019.134953

    Article  CAS  Google Scholar 

  • Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., & Zemla, J. (2021). R package “corrplot”: Visualization of a correlation matrix. Version 0.90. Retrieved September 10, 2021, from https://bit.ly/3R9QpFm

  • Weinhouse, C., Gallis, J. A., Ortiz, E., Berky, A. J., Morales, A. M., Diringer, S. E., Harrington, J., Bullins, P., Rogers, L., Hare-Grogg, J., Hsu-Kim, H., & Pan, W. K. (2020). A population-based mercury exposure assessment near an artisanal and small-scale gold mining site in the Peruvian Amazon. Exposure Science & Environmental Epidemiology, 31(1), 126–136. https://doi.org/10.1038/s41370-020-0234-2

    Article  CAS  Google Scholar 

  • Wittmann, H., von Blanckenburg, F., Bouchez, J., Dannhaus, N., Naumann, R., Christl, M., & Gaillardet, J. (2012). The dependence of meteoric 10Be concentrations on particle size in Amazon River bed sediment and the extraction of reactive 10Be/9Be ratios. Chemical Geology, 318, 126–138. https://doi.org/10.1016/j.chemgeo.2012.04.031

    Article  CAS  Google Scholar 

  • Yang, S., Taylor, D., Yang, D., He, M., Liu, X., & Xu, J. (2021). A synthesis framework using machine learning and spatial bivariate analysis to identify drivers and hotspots of heavy metal pollution of agricultural soils. Environmental Pollution, 287, 117611. https://doi.org/10.1016/j.envpol.2021.117611

    Article  CAS  Google Scholar 

  • Yao, Y., Li, J., He, C., Hu, X., Yin, L., Zhang, Y., Zhang, J., Huang, H., Yang, S., He, H., Zhu, F., & Li, S. (2021). Distribution characteristics and relevance of heavy metals in soils and colloids around a mining area in Nanjing, China. Bulletin of Environmental Contamination and Toxicology, 107(6), 996–1003. https://doi.org/10.1007/s00128-021-03350-0

    Article  CAS  Google Scholar 

  • Yuanan, H., He, K., Sun, Z., Chen, G., & Cheng, H. (2020). Quantitative source apportionment of heavy metal (loid) s in the agricultural soils of an industrializing region and associated model uncertainty. Journal of Hazardous Materials, 391, 122244. https://doi.org/10.1016/j.jhazmat.2020.122244

    Article  CAS  Google Scholar 

  • Yusta-García, R., Orta-Martínez, M., Mayor, P., González-Crespo, C., & Rosell-Melé, A. (2017). Water contamination from oil extraction in Northern Peruvian Amazonian rivers. Environmental Science and Technology. https://doi.org/10.1016/j.envpol.2017.02.063

    Article  Google Scholar 

  • Zhang, X., Wei, S., Sun, Q., Wadood, S. A., & Guo, B. (2018). Source identification and spatial distribution of arsenic and heavy metals in agricultural soil around Hunan industrial estate by positive matrix factorization model, principle components analysis and geo statistical analysis. Ecotoxicology and Environmental Safety, 159, 354–362. https://doi.org/10.1016/j.ecoenv.2018.04.072

    Article  CAS  Google Scholar 

  • Zhao, L., Xie, Y., Wang, J., & Xu, X. (2015). A performance assessment and adjustment program for air quality monitoring networks in Shanghai. Atmospheric Environment, 122, 382–392. https://doi.org/10.1016/j.atmosenv.2015.09.069

    Article  CAS  Google Scholar 

  • Zhao, K., Zhang, L., Dong, J., Wu, J., Ye, Z., Zhao, W., Ding, L., & Fu, W. (2020). Risk assessment, spatial patterns and source apportionment of soil heavy metals in a typical Chinese hickory plantation region of southeastern China. Geoderma, 360, 114011. https://doi.org/10.1016/j.geoderma.2019.114011

    Article  CAS  Google Scholar 

  • Zhiyuan, W., Dengfeng, W., Huiping, Z., & Zhiping, Q. (2011). Assessment of soil heavy metal pollution with principal component analysis and geoaccumulation index. Procedia Environmental Sciences, 10, 1946–1952. https://doi.org/10.1016/j.proenv.2011.09.305

    Article  CAS  Google Scholar 

  • Zhou, J., Feng, K., Pei, Z., Meng, F., & Sun, J. (2015). Multivariate analysis combined with GIS to source identification of heavy metals in soils around an abandoned industrial area. Eastern China. Ecotoxicology, 25(2), 380–388. https://doi.org/10.1007/s10646-015-1596-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Geological, Mining and Metallurgical Institute (INGEMMET) for having provided data on heavy metal concentrations in soils of the Peruvian Amazon plain.

Author information

Authors and Affiliations

Authors

Contributions

José Abel Espinoza Guillen: conceptualization, methodology, formal analysis, writing-original draft, writing-review and editing, supervision, resources; Marleni Beatriz Alderete Malpartida: methodology, writing-original draft, writing-review and editing, supervision, resources; Jessica Emily Escobar Mendoza: writing-original draft, writing-review and editing, visualization, resources; Ursula Fiorela Navarro Abarca: writing-original draft, writing-review and editing, visualization, resources; Katya Angelot Silva Castro: writing-original draft, writing-review and editing, visualization, resources; Paula Leonor Martinez Mercado: writing-original draft, writing-review and editing, visualization, resources.

Corresponding author

Correspondence to José Abel Espinoza-Guillen.

Ethics declarations

Ethics approval

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinoza-Guillen, J.A., Alderete-Malpartida, M.B., Escobar-Mendoza, J.E. et al. Identifying contamination of heavy metals in soils of Peruvian Amazon plain: use of multivariate statistical techniques. Environ Monit Assess 194, 817 (2022). https://doi.org/10.1007/s10661-022-10494-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10494-x

Keywords

Navigation