Skip to main content
Log in

Exposure characteristics of ultrafine particles on urban streets and its impact on pedestrians

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In order to investigate the pedestrian exposure characteristics of ultrafine particles (UFPs) on urban streets, both mobile and fixed-point monitoring experiments were conducted. A generalized additive model and a respiratory deposition dose model were used to quantify the influencing factors and potential harm of UFPs, respectively. The results showed that UFPs’ hotspots were more likely to manifest at places where vehicles tend to cluster, namely at road intersections and bus stops. The pedestrian bridge had the lowest number concentration of UFPs in comparison with the pedestrian crossing and underground passage at the same intersection. Aboveground, a “weekend effect” acting upon urban streets and evidence for periodicity at the intersections were found. The UFPs’ number concentration was comprehensively explained—about 62.7% of its variation—by traffic volume, wind speed, temperature, and relative humidity. The UFPs were mainly deposited in the alveolar region of the respiratory system, but the deposition doses of males exceeded those of females under the same conditions. Based on these findings, the study also provides appropriate suggestions for better managing traffic pollution sources, traffic infrastructure, and traffic organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdullah, S., Ismail, M., Ahmed, A. N., & Abdullah, A. M. (2019). Forecasting particulate matter concentration using linear and non-linear approaches for air quality decision support. Atmosphere, 10(11), 667.

    Article  Google Scholar 

  • Adams, M. D., Massey, F., Chastko, K., & Cupini, C. (2020). Spatial modelling of particulate matter air pollution sensor measurements collected by community scientists while cycling, land use regression with spatial cross-validation, and applications of machine learning for data correction. Atmospheric Environment, 230, 117479.

    Article  CAS  Google Scholar 

  • Andersen, Z. J., Olsen, T. S., Andersen, K. K., Loft, S., & Ketzel, M. (2010). Association between short-term exposure to ultrafine particles and hospital admissions for stroke in Copenhagen, Denmark. European Heart Journal, 31(16), 2034–2040.

    Article  CAS  Google Scholar 

  • Avino, P., Protano, C., Vitali, M., & Manigrasso, M. (2016). Benchmark study on fine-mode aerosol in a big urban area and relevant doses deposited in the human respiratory tract. Environmental Pollution, 216, 530–537.

    Article  CAS  Google Scholar 

  • Bailey, M. R. (1994). The new ICRP model for the respiratory tract. Radiation Protection Dosimetry, 53, 107–114.

    Article  CAS  Google Scholar 

  • Baratian-Ghorghi, Z., & Kaye, N. B. (2013). The effect of canyon aspect ratio on flushing of dense pollutants from an isolated street canyon. Science of the Total Environment, 443, 112–122.

    Article  CAS  Google Scholar 

  • Belleudi, V., Faustini, A., Stafoggia, M., Cattani, G., Marconi, A., Perucci, C. A., & Forastiere, F. (2010). Impact of fine and ultrafine particles on emergency hospital admissions for cardiac and respiratory diseases. Epidemiology, 21(3), 414–423.

    Article  Google Scholar 

  • Birmili, W., Tomsche, L., Sonntag, A., Opelt, C., Weinhold, K., Nordmann, S., & Schmidt, W. (2013). Variability of aerosol particles in the urban atmosphere of Dresden (Germany): Effects of spatial scale and particle size. Meteorologische Zeitschrift, 22(2), 195–211.

    Article  Google Scholar 

  • Bruntz, S. M., Cleveland, W. S., Graedel, T. E., Kleiner, B., & Warner, J. L. (1974). Ozone concentrations in New Jersey and New York: Statistical association with related variables. Science, 186(4160), 257–259.

    Article  CAS  Google Scholar 

  • Carpentieri, M., Kumar, P., & Robins, A. (2011). An overview of experimental results and dispersion modelling of nanoparticles in the wake of moving vehicles. Environmental Pollution, 159(3), 685–693.

    Article  CAS  Google Scholar 

  • Choi, H. W., & Frey, H. C. (2009). Light duty gasoline vehicle emission factors at high transient and constant speeds for short road segments. Transportation Research Part D Transport & Environment, 14(8), 610–614.

    Article  Google Scholar 

  • Cleveland, W. S., Graedel, T. E., Kleiner, B., & Warner, J. L. (1974). Sunday and workday variations in photochemical air pollutants in New Jersey and New York. Science, 186(4168), 1037–1038.

    Article  CAS  Google Scholar 

  • Frank, C. (1973). The behavior of stock prices on Fridays and Mondays. Financial Analysts Journal, 29(6), 67–69.

    Article  Google Scholar 

  • Fujita, E. M., Campbell, D. E., Zielinska, B., Chow, J. C., Lindhjem, C. E., Denbleyker, A., Bishop, G. A., Schuchmann, B. G., Stedman, D. H., & Lawson, D. R. (2012). Comparison of the MOVES2010a, MOBILE6.2, and EMFAC2007 mobile source emission models with on-road traffic tunnel and remote sensing measurements. Journal of the Air & Waste Management Association, 62(10), 1134–1149.

    Article  CAS  Google Scholar 

  • Goel, A., & Kumar, P. (2015). Characterisation of nanoparticle emissions and exposure at traffic intersections through fast–response mobile and sequential measurements. Atmospheric Environment, 107, 374–390.

    Article  CAS  Google Scholar 

  • Greenwald, R., Hayat, M. J., Dons, E., Giles, L., Villar, R., Jakovljevic, D. G., & Good, N. (2019). Estimating minute ventilation and air pollution inhaled dose using heart rate, breath frequency, age, sex and forced vital capacity: A pooled-data analysis. PLoS ONE, 14(7), e0218673.

    Article  CAS  Google Scholar 

  • Ham, W., Vijayan, A., Schulte, N., & Herner, J. D. (2017). Commuter exposure to PM2.5, BC, and UFP in six common transport microenvironments in Sacramento, California. Atmospheric Environment, 167, 335–345.

    Article  CAS  Google Scholar 

  • Hang, J., Luo, Z., Wang, X., He, L., Wang, B., & Zhu, W. (2017). The influence of street layouts and viaduct settings on daily carbon monoxide exposure and intake fraction in idealized urban canyons. Environmental Pollution, 220, 72–86.

    Article  CAS  Google Scholar 

  • He, H., & Gao, H. O. (2021). Particulate matter exposure at a densely populated urban traffic intersection and crosswalk. Environmental Pollution, 268, 115931.

    Article  CAS  Google Scholar 

  • He, L., Hang, J., Wang, X., Lin, B., Li, X., & Lan, G. (2017). Numerical investigations of flow and passive pollutant exposure in high-rise deep street canyons with various street aspect ratios and viaduct settings. Science of the Total Environment, 584–585, 189–206.

    Article  Google Scholar 

  • Hussein, T., Loendahl, J., Paasonen, P., Koivisto, A. J., Petaejae, T., Haemeri, K., & Kulmala, M. (2013). Modeling regional deposited dose of submicron aerosol particles. Science of the Total Environment, 458–460, 140–149.

    Article  Google Scholar 

  • Hussein, T., Saleh, S., Santos, V., Boor, B. E., & Koivisto, A. J. (2019). Regional inhaled deposited dose of urban aerosols in an Eastern Mediterranean city. Atmosphere, 10(9), 530.

    Article  CAS  Google Scholar 

  • Jihoon, P., Yoon, C., & Lee, K. (2018). Comparison of modeled estimates of inhalation exposure to aerosols during use of consumer spray products. International Journal of Hygiene and Environmental Health, 221(6), 941–950.

    Article  Google Scholar 

  • Juan, Y., Yang, A., Wen, C., Lee, Y., & Wang, P. (2017). Optimization procedures for enhancement of city breathability using arcade design in a realistic high-rise urban area. Building and Environment, 121, 247–261.

    Article  Google Scholar 

  • Kecorius, S., Madueño, L., Löndahl, J., Vallar, E., Galvez, M. C., Idolor, L. F., Gonzaga-Cayetano, M., Müller, T., Birmili, W., & Wiedensohler, A. (2019). Respiratory tract deposition of inhaled roadside ultrafine refractory particles in a polluted megacity of South-East Asia. Science of the Total Environment, 663, 265–274.

    Article  CAS  Google Scholar 

  • Kittelson, D. B. (1998). Engines and nanoparticles: A review. Journal of Aerosol Science, 29(5–6), 575–588.

    Article  CAS  Google Scholar 

  • Kozawa, K. H., Fruin, S. A., & Winer, A. M. (2009). Near-road air pollution impacts of goods movement in communities adjacent to the ports of Los Angeles and Long Beach. Atmospheric Environment, 43(18), 2960–2970.

    Article  CAS  Google Scholar 

  • Krecl, P., Cipoli, Y. A., Targino, A. C., Toloto, M., Segersson, D., Parra, A., Polezer, G., Godoi, R. H. M., & Gidhagen, L. (2019). Modelling urban cyclists’ exposure to black carbon particles using high spatiotemporal data: A statistical approach. Science of the Total Environment, 679, 115–125.

    Article  CAS  Google Scholar 

  • Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M., Harrison, R. M., Norford, L., & Britter, R. (2014). Ultrafine particles in cities. Environment International, 66, 1–10.

    Article  CAS  Google Scholar 

  • Lanzinger, S., Schneider, A., Breitner, S., Stafoggia, M., Erzen, I., Dostal, M., Pastorkova, A., Bastian, S., Cyrys, J., Zscheppang, A., Kolodnitska, T., & Peters, A. (2016). Associations between ultrafine and fine particles and mortality in five central European cities - Results from the UFIREG study. Environment International, 88, 44–52.

    Article  Google Scholar 

  • Lei, X., Bian, J., Xiu, G., Hu, X., Gu, X., & Bian, Q. (2017). The mobile monitoring of black carbon and its association with roadside data in the Chinese megacity of Shanghai. Environmental Science and Pollution Research, 24, 7482–7489.

    Article  CAS  Google Scholar 

  • Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C., Sempf, J., Wang, M., Oberley, T., Froines, J., & Nel, A. (2003). Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environmental Health Perspectives, 111(4), 455–460.

    Article  CAS  Google Scholar 

  • Li, Z., Shi, T., Wu, Y., Zhang, H., & Zhou, N. (2020). Effect of traffic tidal flow on pollutant dispersion in various street canyons and corresponding mitigation strategies. Energy and Built Environment, 1(3), 242–253.

    Article  Google Scholar 

  • Löndahl, J., Massling, A., Pagels, J., Swietlicki, E., Vaclavik, E., & Loft, S. (2007). Size-resolved respiratory-tract deposition of fine and ultrafine hydrophobic and hygroscopic aerosol particles during rest and exercise. Inhalation Toxicology., 19(2), 109–116.

    Article  Google Scholar 

  • Luo, Y., Liu, S., Che, L., & Yu, Y. (2021). Analysis of temporal spatial distribution characteristics of PM2.5 pollution and the influential meteorological factors using Big Data in Harbin, China. Journal of the Air & Waste Management Association, 71(8), 964–973.

    Article  CAS  Google Scholar 

  • Manigrasso, M., Vitali, M., Protano, C., & Avino, P. (2018). Ultrafine particles in domestic environments: Regional doses deposited in the human respiratory system. Environment International, 118, 134–145.

    Article  CAS  Google Scholar 

  • Maurizio, M., Claudio, N., Matteo, V., Carmela, P., & Pasquale, A. (2017). Pedestrians in traffic environments: Ultrafine particle respiratory doses. International Journal of Environmental Research and Public Health, 14(3), 288.

    Article  Google Scholar 

  • Miller, M. R., Raftis, J. B., Langrish, J. P., Mclean, S. G., Samutrtai, P., Connell, S. P., Simon, W., Vesey, A. T., Fokkens, P. H. B., Boere, A. J. F., Petra, K., Campbell, C. J., Hadoke, P. W. F., Ken, D., Cassee, F. R., Newby, D. E., Rodger, D., & Mills, N. L. (2017). Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano, 11(5), 4542–4552.

    Article  CAS  Google Scholar 

  • Miyake, Y., Yura, A., & Iki, M. (2002). Relationship between distance from major roads and adolescent health in Japan. Journal of Epidemiology, 12(6), 418.

    Article  Google Scholar 

  • Mosonik, B. C., Kibet, J. K., & Ngari, S. M. (2019). Simulating the health impact of particulate emissions from transport fuels using multipath particle deposition model (MPPD). Open Journal of Modelling and Simulation, 07(2), 115–124.

    Article  Google Scholar 

  • Nunen, E. V., Vermeulen, R., Tsai, M. Y., Probst-Hensch, N., et al. (2020). Associations between modeled residential outdoor and measured personal exposure to ultrafine particles in four European study areas. Atmospheric Environment, 226, 117353.

    Article  Google Scholar 

  • Ohlwein, S., Kappeler, R., Kutlar Joss, M., Künzli, N., & Hoffmann, B. (2019). Health effects of ultrafine particles: A systematic literature review update of epidemiological evidence. International Journal of Public Health, 64(4), 547–559.

    Article  Google Scholar 

  • Polednik, B., & Piotrowicz, A. (2019). Pedestrian exposure to traffic-related particles along a city road in Lublin, Poland. Atmospheric Pollution Research, 11(4), 686–692.

    Article  Google Scholar 

  • Qiu, Z., & Peng, X. (2015). Investigating the impact of urban grade-separation on pedestrian PM2.5 exposure. Clean Technologies and Environmental Policy, 17(7), 1917–1927.

    Article  CAS  Google Scholar 

  • Qiu, Z., Lv, H., Zhang, F., Wang, W., & Hao, Y. (2019). Pedestrian exposure to PM2.5, BC and UFP of adults and teens: A case study in Xi’an, China. Sustainable Cities and Society, 51, 101774.

    Article  Google Scholar 

  • Qiu, Z., Xu, X., Song, J., Hao, Y., & Li, X. (2017). Pedestrian exposure to traffic PM on different types of urban roads: A case study of Xi’an, China. Sustainable Cities and Society, 32, 475–485.

    Article  Google Scholar 

  • Rakowska, A., Wong, K. C., Townsend, T., Chan, K. L., Westerdahl, D., Ng, S., Mocnik, G., Drinovec, L., & Zhi, N. (2014). Impact of traffic volume and composition on the air quality and pedestrian exposure in urban street canyon. Atmospheric Environment, 98, 260–270.

    Article  CAS  Google Scholar 

  • Shi, T., Ming, T., Wu, Y., Peng, C., & Richter, R. D. (2020). The effect of exhaust emissions from a group of moving vehicles on pollutant dispersion in the street canyons. Building and Environment, 181, 107120.

    Article  Google Scholar 

  • Sicard, P., Paoletti, E., Agathokleous, E., Araminien, V., & Marco, A. D. (2020). Ozone weekend effect in cities: Deep insights for urban air pollution control. Environmental Research, 191, 110193.

    Article  CAS  Google Scholar 

  • Slezakova, K., Pereira, M. C., & Morais, S. (2020). Ultrafine particles: Levels in ambient air during outdoor sport activities. Environmental Pollution, 258, 113648.

    Article  CAS  Google Scholar 

  • Su, W., Chen, Y., & Xi, J. (2019). A new approach to estimate ultrafine particle respiratory deposition. Inhalation Toxicology, 31(1), 35–43.

    Article  CAS  Google Scholar 

  • Viitanen, A. K., Uuksulainen, S., Koivisto, A. J., Hämer, K., & Kauppinen, T. (2017). Workplace measurements of ultrafine particles—A literature review. Annals of Work Exposures & Health, 61(7), 749–758.

    Article  CAS  Google Scholar 

  • Yang, F., Kaul, D., Wong, K. C., Westerdahl, D., Sun, L., Ho, K. F., Tian, L., Brimblecombe, P., & Ning, Z. (2015). Heterogeneity of passenger exposure to air pollutants in public transport microenvironments. Atmospheric Environment, 109, 42–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank both the technicians and participating experimenters for their valuable assistance and cooperation in conducting the practical experiments.

Funding

This research was supported by the National Natural Science Foundation of China (Program No. 52072045) and the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2020JM-225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaowen Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, R., Qiu, Z. Exposure characteristics of ultrafine particles on urban streets and its impact on pedestrians. Environ Monit Assess 194, 735 (2022). https://doi.org/10.1007/s10661-022-10453-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10453-6

Keywords

Navigation