Skip to main content

Advertisement

Log in

Mobility of trace metals and microbiological pollution from dredged sediments to the Gulf of Gabes, Tunisia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Sediments are periodically dredged from the major ports in the Gulf of Gabes (GG) during maintenance operations. These sediments are dumped near the coats of Sfax and Gabes cities. In the present study, 6 trace metals (Cd, Cu, Cr, Ni, Pb, and Zn) concentrations were assessed in both sediments and column water taken from the different basins of Sfax port. This study is the first to focus on the microbial and microalgae contaminations of Sfax port sediments. The spatial distributions of trace metals in dredged sediments from the different basins of Sfax port show that the maximum concentrations of Cd (13.75 µg/g), Cu (892.5 µg/g), and Zn (1447 µg/g) exceeded the Geode standard thresholds. The same elements, also detected in the water column, exceeded the toxicity thresholds for phytoplankton, shellfish, and algae (Cd 0.095 µg/l, Cu 4.52 µg/l, and Zn 37 µg/l). The presence of coliforms, indicators of sewage pollution, as pathogenic germs (Pseudomonas), was shown through microbiological examinations of the sediments and water column. The microalgae enumeration showed the abundance of dinoflagellate cysts (stressed form) which attests to the presence of severe conditions in Sfax port. Different toxic species were identified as Prorocentrum lima and Alexandrium minutum. The same trace metal sources and abundance in Sfax port and GG sediments suggest the hypothesis of their transfer from their disposal sites in coastal areas to deeper depths in the GG and until Boughrara lagoon (BL). As trace metals, microalgae species were also transferred by hydrodynamic currents inside the GG where they found suitable conditions to their proliferation causing the seawater coloration phenomenon, eutrophication, and degradation of the aquatic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Available on request.

References

  • Abdennadher, M., Hamza, A., Fekih, W., Hannachi, I., Zouari, B. A., Bradai, N., & Aleya, L. (2012). Factors determining the dynamics of toxic blooms of Alexandrium minutum during a 10- year study along the shallow southwestern Mediterranean coasts. Estuarine, Coastal and Shelf Science, 106, 102–111. https://doi.org/10.1016/j.ecss.2012.04.029

    Article  CAS  Google Scholar 

  • Abdmouleh Keskes, F. (2021). Les kystes de dinoflagellés : bio-indicateurs du stress sur les côtes du Golfe de Gabès. PhD thesis, University of Sfax, Tunisia, 288p.

  • Alioua, M., & Harzallah, A. (2008). Imbrication d’un modèle de circulation des eaux près des côtes Tunisiennes dans un modèle de circulation de la mer Méditerranée. Bulletin Institut National Des Sciences Et Technologies De La Mer De Salammbô, 35, 169–176.

    Google Scholar 

  • Amari, A. (1984). Contribution à la connaissance hydrologique et sédimentologique de la plate-forme de Kerkennah. Thèse 3ème cycle, University of Tunis, Tunisia, 169p.

  • Aydin, H., Yurur, E. E., Uzar, S., & Kucuksezgin, F. (2015). Impact of industrial pollution on recent dinoflagellate cysts in Izmir Bay (Eastern Aegean). Marine Pollution Bulletin, 94(2015), 144–152. https://doi.org/10.1016/j.marpolbul.2015.02.038

    Article  CAS  Google Scholar 

  • Azri, C., Maalej, A., Medhioub, K., & Rosset, R. (2007). Evolution of atmospheric pollutants in the city of Sfax (Tunisia) (October 1996–June 1997). Atmosfera, 20(3), 223–246.

    Google Scholar 

  • Bahloul, M., Chabbi, I., Dammak, R., Amdouni, R., Medhioub, K., & Azri, C. (2015). Geochemical behaviour of PM10 aerosol constituents under the influence of succeeding anticyclonic/cyclonic situations: Case of Sfax City, southern Tunisia. Environmental Monitoring and Assessment, 757, 2–17. https://doi.org/10.1007/s10661-015-4980-x

    Article  CAS  Google Scholar 

  • Bahloul, M., Baati, H., Amdouni, R., & Azri, C. (2018). Assessment of heavy metals contamination and their potential toxicity in the surface sediments of Sfax Solar Saltern Tunisia. Environmental Earth Sciences, 77(27), 1–22. https://doi.org/10.1007/s12665-018-7227-7

    Article  CAS  Google Scholar 

  • Bartram, J., & Balance, R. (1996). Water quality monitoring - A practical guide to the design and implementation of freshwater quality studies and monitoring programmes. United Nations Environment Programme and the World Health Organization UNEP/WHO, 27p.

  • Bel Hadj Ali, I. (2013). Contribution à l’étude des sédiments marins tunisiens : cas des ports de Radès et de Gabès. Thèse de doctorat, Ecole Nationale d’Ingénieurs de Tunis - ENIT (Tunisie) et Ecole Centrale de Lille (France), 195 p.

  • Bravo, I., & Figueroa, R. I. (2014). Towards an ecological understanding of dinoflagellate cyst functions. Microorganisms, 2, 11–32. https://doi.org/10.3390/microorganisms2010011

    Article  Google Scholar 

  • Bravo, I., Figueroa, R. I., Garceés, E., Fraga, S., & Massanet, A. (2010). The intricacies of dinoflagellate pellicle cysts: The example of Alexandrium minutum cysts from a bloom-recurrent area (Bay of Baiona, NW Spain). Deep-Sea Research Part II, 57, 166–174. https://doi.org/10.1016/j.dsr2.2009.09.003

    Article  Google Scholar 

  • Burollet, P. F. (1979). Climat et hydrologie/ Climate and hydrology. Géologie Méditerranéenne, 6–1, 28–34.

    Article  Google Scholar 

  • CCME. (1999). Canadian sediment quality guidelines for the protection of aquatic life: Mercury, zinc, lead, copper, chrome and cadmium. Canadian Environmental Quality Guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg.

  • Chen, D., Zheng, J., Zhang, C., Guan, D., Li, Y., & Wang, Y. (2021). Critical shear stress for erosion of sand-mud mixtures and pure mud. Frontiers in Marine Science, 8, 713039. https://doi.org/10.3389/fmars.2021.713039

    Article  Google Scholar 

  • Chifflet, S., Tedetti, M., Zouch, H., Fourati, R., Zaghden, H., Elleuch, B., Quéméneur, M., Karray, F., & Sayadi, S. (2019). Dynamics of trace metals in a shallow coastal ecosystem: Insights from the Gulf of Gabès (southern Mediterranean Sea). AIMS Environmental Science, 6(4), 277–297. https://doi.org/10.3934/environsci.2019.4.277

    Article  CAS  Google Scholar 

  • Chouba, L., & Mzoughi-Aguir, N. (2006). Les métaux traces (cd, pb, hg) et les hydrocarbures totaux dans les sédiments superficiels de la frange cotière du golfe de gabès. Bulletin De L’institut National Des Sciecnes Et Technologies De La Mer (INSTM), 33, 93–100.

    Google Scholar 

  • Comete Engineering. (2008). Etude de la dépollution et de la réhabilitation des côtes au sud de Sfax. Rapport sommaire. Code d'ingénierie, Comete 26079, 36 p.

  • Dammak Walha, L., Hamza, A., Abdmouleh Keskes, F., Cibic, T., Mechi, A., Mahfoudi, M., Sammari, C. H. (2021). Heavy metals accumulation in environmental matrices and their influence on potentially harmful dinoflagellates development in the GG (Tunisia). Estuarine, Coastal and Shelf Science, 254, 107317. https://doi.org/10.1016/j.ecss.2021.107317

  • Dean, W. E. Jr. (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. Journal of Sedimentary Petrology, 44, 242–248.

  • Dhib, A., Fertouna-Bellakhal, M., Turki, S., & Aleya, L. (2015). Harmful planktonic and epiphytic microalgae in a Mediterranean Lagoon: The contribution of the macrophyte Ruppia cirrhosa to microalgae dissemination. Harmful Algae, 45, 1–13. https://doi.org/10.1016/j.hal.2015.03.002

    Article  Google Scholar 

  • Elsaeed, G. H. (2011). The impact of dredging on coastal environments. Australian Journal of Basic and Applied Sciences, 5(2), 74–81. ISSN 1991–8178

  • El Zrelli, R., Courjault-Radé, P., Rabaoui, L., Castet, S., Michel, S., & Béjaoui, N. (2015). Heavy metal contamination and ecological risk assessment in the surface sediments of the coastal area complex of Gabes city, GG. Marine Pollution Bulletin, 101, 922–929. https://doi.org/10.1016/j.marpolbul.2015.10.047

    Article  CAS  Google Scholar 

  • Feifel, K. M., Fletcher, S. J., Watson, L. R., Moore, S. K., & Lessard, E. J. (2015). Alexandrium and Scrippsiella cyst viability and cytoplasmic fullness in a 60-cm sediment core from Sequim Bay, WA. Harmful Algae, 47, 56–65. https://doi.org/10.1016/j.hal.2015.05.009

    Article  Google Scholar 

  • Feki Sahnoun, W. (2013). Analyse de la variabilité spatio-temporelle des populations phytoplanctoniques observées dans le réseau national de surveillance du phytoplancton dans le Golfe de Gabès. PhD Thesis, University of Sfax.263 p.

  • Feki Sahnoun, W., Hamza, A., Mahfoudi, M., Rebai, A., & Bel Hassen, M. (2014). Long-term microphytoplankton variability patterns using multivariate analyses: Ecological and management implications. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-014-3009-2

  • Gargouri, D., Azri, C., Serbaji, M. M., Jedoui, Y., & Montacer, M. (2011). Heavy metal concentrations in the surface marine sediments of Sfax Coast, Tunisia. Environmental Monitoring and Assessment, 17, 519–530. https://doi.org/10.1007/s10661-010-1548-7

    Article  CAS  Google Scholar 

  • Geode (2014). Evaluation des risques sanitaires des opérations de dragage et d’immersion en milieu estuarien et marin, 96 p.

  • Gonzalez, J. L., Boutier, B., Chiffoleau, J. -E., Auger, D., Noël, J. & Truquet, I. (1991). Distribution of Cd and Hg in the Bay of Marennes-Oléron. Oceanologica Acta 14, 559-568. https://doi.org/10.1016/j.csr.2011.03.006

  • Guillard, R. R. L., & Hargraves, P. E. (1993). Stichochrysis Immobilis is a diatom, not a chrysophyte. Phycologia, 32, 234–236. https://doi.org/10.2216/i0031-8884-32-3-234.1

    Article  Google Scholar 

  • Hamza, A. (2003). Le statut du phytoplancton dans le Golfe de Gabès. PhD thesis, University of Sfax, Tunisia.

  • Head, M. J. (1996). Modern dinoflagellate cysts and their biological affinities. In: Palynology: Principles and Applications 3. AASP Foundation, Salt Lake City, UT, 1197–1248.

  • ISO 13320-1. (1999). Particle size analysis-Laser diffraction methods. Part 1: General principles.

  • Kharroubi, A., Gzam, M., & Jedoui, Y. (2012). Anthropogenic and natural effects on the water and sediments qualities of costal lagoons: case of the Boughrara Lagoon (Southeast Tunisia). Environmental Earth Science, 67, 1061–1067. https://doi.org/10.1007/s12665-012-1551-0

    Article  CAS  Google Scholar 

  • La Presse. (2019). Sfax : Le changement de couleur de la mer à Sidi Mansour est “un phénomène naturel”. Webmanagercenter Juillet 2019. Retrieved May 5, 2019, from, https://www.webmanagercenter.com

  • Loukil-Baklouti, A., Feki-Sahnoun, W., Hamza, A., Abdennadher, M., Mahfoudhi, M., Bouain, A., & Jarboui, O. (2018). Controlling factors of harmful microalgae distribution in water column, biofilm and sediment in shellfish production area (South of Sfax, GG) from southern Tunisia. Continental Shelf Research., 152, 61–70. https://doi.org/10.1016/j.csr.2017.11.003

    Article  Google Scholar 

  • Matsuoka, K., & Fukuyo, Y. (2000). Technical guide for modern dinoflagellate cyst study, WESTPAC-HAB/WESTPAC/IOC. Faculty of Fisheries, Nagasaki University; Asian Natural Environmental Science Center, the University of Tokyo, 120 p.

  • Matantseva, O., Berdieva, M., Kalinina, V., Pozdnyakov, I., Pechkovskaya, S., & Skarlato, S. (2020). Stressor-induced ecdysis and thecate cyst formation in the armoured dinoflagellates Prorocentrum Cordatum. Science Report, 10, 18322. https://doi.org/10.1038/s41598-020-75194-3

    Article  CAS  Google Scholar 

  • Nafchi, R. F., Samadi-Boroujeni, H., Vanani, H. R., et al. (2021a). Laboratory investigation on erosion threshold shear stress of cohesive sediment in Karkheh Dam. Environment and Earth Science, 80, 681. https://doi.org/10.1007//s12665-021-09984-x

    Article  Google Scholar 

  • Nafchi, R. F., Vanani, R. H., Pashaee, N. K., et al. (2021c). Investigation on the effect of inclined crest step pool on scouring protection in erodible river beds. Natural Hazards. https://doi.org/10.1007/s11069-021-04999-w

  • Nafchi, R. F., Yaghoobi, P., Vanani, R. H., et al. (2021b). Eco-hydrologic stability zonation of dams and power plants using the combined models of SMCE and CEQUALW2. Applied Water Science, 11, 109, 11(7). https://doi.org/10.1007/s13201-021-01427-z

  • Naifar, I., Pereira, F., Zmemla, R., Elleuch, B., & Garcia, D. (2018). Spatial distribution and contamination assessment of heavy metals in marine sediments of the southern coast of Sfax, Gabes Gulf, Tunisia. Marine Pollution Bulletin Elsevier, 131 (Part A), 53–62. https://doi.org/10.1016/j.marpolbul.2018.03.048

  • NF EN ISO 7027–1. (2016). Qualité de l'eau - Détermination de la turbidité - Partie 1 : méthodes quantitatives. AFNOR.

  • NF ISO 11466. (1995). Soil quality. Extraction of trace elements soluble in water regal, AFNOR.

  • NF P 94-048. (2002). Sols : reconnaissance et essais – Détermination de la teneur en carbonate – Méthode du calcimètre. AFNOR. 12 pages.

  • NF P 94-512-1. (2005). Sols : Reconnaissance et essais géotechnique- Essais de laboratoire- Partie 1: Détermination de la teneur en eau (p. 14). AFNOR.

  • NF T90–101. (2001). Qualité de l'eau - Détermination de la demande chimique en oxygène (DCO), AFNOR.

  • NF X31-109. (1998). Soils recognition and testing. Soil quality - Chemical methods - Determination of organic carbon by sulfochromic oxidation.

  • NT. 09.11. (1983). Eaux de baignade- Paramètres physico-chimiques et microbiologiques. Norme Tunisenne n° 131 CDI. 6p.

  • Nguyen, T. V. (2018). Preparation of artificial sea water (ASW) for culturing marine bacteria. Aquaculture Biotechnology Group, School of Science, Auckland University of Technology (AUT), Private Bag 92006, Auckland 1142, New Zealand.

  • Office de la Marine Marchande et des ports (OMMP). (2007). Rapport annuel de l'Office de la Marine Marchande et des Ports, Tunisie (p. 46).

  • Olli, K. (2004). Temporary cyst formation of Heterocapsa triquetra (Dinophyceae) in natural populations. Marine Biology, 145, 1–8. https://doi.org/10.1007/s00227-004-1295-9

    Article  Google Scholar 

  • Onda, D. F. L., Lluisma, A. O., & Azanza, R. V. (2014). Development, morphological characteristics and viability of temporary cysts of Pyrodinium bahamense var. compressum (Dinophyceae) in vitro. European Journal of Phycology, 49(3), 265–275. https://doi.org/10.1080/09670262.2014.915062

  • Othmani, A., Béjaoui, B., Chevalier, C., Elhmaidi, D., Devenon, J. L., & Aleya, L. (2017). High-resolution numerical modelling of the barotropic tides in the GG, eastern Mediterranean Sea (Tunisia). Journal of African Earth Sciences, 129, 224–232. https://doi.org/10.1016/j.jafrearsci.2017.01.007

    Article  Google Scholar 

  • Pandey, P. K., Kass, P. H., Soupir, M. L., Biswas, S., & Singh, V. P. (2014). Contamination of water resources by pathogenic bacteria. AMB Express, 2014(4), 51. https://doi.org/10.1186/s13568-014-0051-x

    Article  Google Scholar 

  • Penna, A., Fraga, S., Maso, M., Giacobbe, M. G., Bravo, I., Garces, E., Vila, M., Bertozzini, E., Andreoni, F., & Vernesi, C. (2008). Phylogenetic relationships among the Mediterranean Alexandrium (Dinophyceae) species based on sequences of 5.8S gene and internal transcript spacers of the rRNA opéron. European Journal of Phycology, 43(2), 163–178. https://doi.org/10.1080/096702607017837730

  • Radi, T., Pospelova, V., DeVernal, A., & Barrie, J. V. (2007). Dinoflagellate cysts as indicators of water quality and productivity in British Columbia estuarine environments. Marine Micropaleontolgy, 62(4), 269–297. https://doi.org/10.1016/j.marmicro.2006.09.002

    Article  Google Scholar 

  • Schaule, B. K. & Patterson, C. C. (1983). Perturbation of the natural lead depth profile in the Sargasso Sea by industrial lead. In: Wong C.S, Boyle E, Bruland K.W. (Eds.). Trace Metals in Sea Water Plenum Press, New York, 497–504.

  • Solic, M., & Krstulovic, N. (1994). Role of predation in controlling bacterial and heterotrophic nanoflagellates standing stocks in the coastal Adriatic Sea: Seasonal patterns. Marine Ecology Progress Series, 114, 219–235. https://www.jstor.org/stable/24849697

  • Sournia, A. (1958). Phytoplankton manual. Muséum National d’Histoire Naturelle. Paris, (Eds) Unesco, 337p.

  • Stronkhorst, J., Schipper, C. A., Honkoop, J., & Essen, K. V. (2001). Disposal of dredged material in Dutch coastal waters; A new, effect-oriented assessment framework. National Institute for Coastal and Marine Management/ RIKZ, 1–37.

  • Taylor, D. I., Nixon, S. W., Granger, S. L., Buckley, B. A., McMahon, J. P., & Lin, H. J. (1995). Responses of coastal lagoon plant communities to different forms of nutrient enrichment a mesocosm experiment. Aquatic Botany, 52, 19–34. https://doi.org/10.1016/0304-3770(95)00485-I

    Article  Google Scholar 

  • Turley, C. (2000). Bacteria in the cold deep-sea benthic boundary layer and sediment-water interface of the NE Atlantic. FEMS Microbiology Ecology, 33, 89–99.

    CAS  Google Scholar 

  • Wang, Z., Qi, Y., Lu, S., Wang, Y., & Matsuoka, K. (2004). Seasonal distribution of dinoflagellate resting cyst in surface sediment from Changjang River Estuary. Phycological Research, 52, 387–395. https://doi.org/10.1080/09670262.2014.915062

    Article  CAS  Google Scholar 

  • XP CEN ISO/TS 17892-3. (2005). Reconnaissance et essais géotechniques – Essais de laboratoire sur les sols. Partie 3 – Détermination de la masse volumique des particules solides – Méthode du pycnomètre. 18 pages.

  • XP P94–047. (1998). Soils: Recognition and testing - Determination of the organic content by weight of a material - Method by calcination. AFNOR, 8 p.

  • Yoshpe-Purer, Y., & Golderman, S. (1987). Occurrence of Staphylococcus aureus and Pseudomonas aeruginosa in Israeli coastal water. App. Environ. Microbiol., 53(5), 1138–1141. https://doi.org/10.1128/aem.53.5.1138-1141.1987

    Article  CAS  Google Scholar 

  • Zonneveld, K. A. F. (1997). New species of organic-walled dinoflagellate cysts from modern sediments of the Arabian Sea (Indian Ocean). Review of Palaeobotany and Palynology, 97, 319–337.

    Article  Google Scholar 

  • Zonneveld, K. A. F., Marret, F., Versteegh, K., Bogus, S., Bonnet, I., Bouimetarhan, E., Crouch, A., de Vernal, R., Elshanawany, L., Edwards, O., Esper, S., Forke, K., Grøsfjeld, M., Henry, U., Holzwarth, J. F., Kielt, S. Y., Kim, S., Ladouceur, D., Ledu, L.,  Wang, M. Y. (2013). Atlas of modern dinoflagellate cyst distribution based on 2405 data points. Review of Palaeobotany and Palynology, 191, 1–197. https://doi.org/10.1016/j.revpalbo.2012.08.003

    Article  Google Scholar 

  • Zonneveld, K. A. F., & Pospelova, V. (2015). A determination key for modern dinoflagellate cysts. Palynology, 39(3), 387–409. https://doi.org/10.1080/01916122.2014.990115

    Article  Google Scholar 

Download references

Funding

This study was supported by the Tunisian Ministry of Higher Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nesma Feki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feki, N., Khannous, L., Keskes, F.A. et al. Mobility of trace metals and microbiological pollution from dredged sediments to the Gulf of Gabes, Tunisia. Environ Monit Assess 194, 815 (2022). https://doi.org/10.1007/s10661-022-10451-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10451-8

Keywords

Navigation