Skip to main content

Advertisement

Log in

Physico-chemical and thermal characteristics of sandy loam soils contaminated by single and mixed pollutants (mineral and vegetable oils)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Samples of contaminated top soil (0–30 cm) and uncontaminated soil (control) from two locations in Precambrian basement complex area were analyzed to assess the effects of single and mixed oil contaminants on the physico-chemical and thermal properties of soils. Pearson’s correlation and analysis of variance (ANOVA) were used to study the interrelationships of the studied parameters as well as variation of studied soil characteristics under the different oil contaminants, respectively. Results showed insignificant impact of pollutant(s) on the textural class of contaminated soils. The highest and lowest mean soil resistivity (SR) values were found in petrol-contaminated and mixed surfactants (shampoo + conditioner) -contaminated soils, respectively. The least values of mean specific heat capacity (SHC), heat capacity (HC), and soil water diffusivity (SWD) were found in soils contaminated by mixed surfactants-contaminants. However, mixed mineral oils (petrol + diesel + engine oil) and mixed vegetable oils (palm oil + groundnut oil) had mean SHC values lower than those of control soils at the two sampling locations. The mixed surfactants-polluted soil is characterized by lowest mean bulk density (BD) and highest mean gravimetric water content (GWC) while lowest mean GWC and highest mean SWD characterized engine oil-contaminated soils. The analysis of variance (ANOVA) result revealed significant variation in % sand at 5% level (p < 0.05) for petroleum-derived contaminants but no significant differences in mean values of all analyzed soil properties under vegetable oil contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  • Abioye, O. P., Aina, P. F., Ijah, J. U. J., & Aransiola, A. S. (2019). Effects of cadmium and lead on the biodegradation of diesel-contaminated soil. Journal of Taibah University for Science, 13(1), 628–638. https://doi.org/10.1080/16583655.2019.1616395

    Article  Google Scholar 

  • ACEA. (2018). Differences between diesel and petrol. European Automobile Manufacturers Association. https://www.acea.be/news/article/differences-between-diesel-and-petrol. Accessed February 2021.

  • Adeleke, O. O., Makinde, V., Eruola, A. O., Dada, O. F., Ojo, A. O., & Aluko, T. J. (2015). Estimation of groundwater recharge in Odeda Local Government Area. Ogun State, Nigeria Using Empirical Formulae, Challenges, 6, 271–281. https://doi.org/10.3390/challe6020271

    Article  Google Scholar 

  • Addis, W., & Abebaw, A. (2017). Determination of heavy metal concentration in soils used for cultivation of Allium Sativum L. (garlic) in East Gojjam zone, Amhara Region, Ethiopia. Cogent Chemistry, 3(1), 1419422. https://doi.org/10.1080/23312009.2017.1419422

  • Ahmed, M. A., Zarebanadkouki, M., Ahmadi, K., Kroener, E., Kostka, S., Kaestner, A., & Carminati, A. (2018). Engineering rhizosphere hydraulics: Pathways to improve plant adaptation to Drought. Vadose Zone Journal, 17, 160090. https://doi.org/10.2136/vzj2016.09.0090

  • Alessandrini, A., & Piraccini, B. M. (2016). Essential of hair care cosmetics. Cosmetics, 3(4), 34. https://doi.org/10.3390/cosmetics3040034

    Article  CAS  Google Scholar 

  • Al Nefaie, K. A., & Abu-Hamdeh, N. H. (2013). Specific heat and volumetric heat capacity of some saudian soils as affected by moisture and density (pp. 139–143). Proceedings of the 2013 International Conferences on Mechanics, Fluids, Heat, Elasticity and Electromagnetic fields.

  • Aladejana, J. A., & Talabi, A. O. (2013). Assessment of groundwater quality in Abeokuta, southwestern Nigeria. International Journal of Engineering and Science, 2(6), 21–31.

  • Al-Dahhan, W. H., & Mahmood, S. M. (2019). Classification of crude oils and its fractions on the basis of Paraffinic, Naphthenic and Aromatics. Al-Nahrain Journal of Science, 22, 35–42. https://doi.org/10.22401/ANJS.22.3.05

  • Al-Waeli, A. H. A., Chaichan, M. T., Kazem, H. A., & Sopian, K. (2019). Evaluation and analysis of nanofluid and surfactant impact on photovoltaic-thermal systems. Case Studies in Thermal Engineering, 13, 100392. https://doi.org/10.1016/j.csite.2019.100392

    Article  Google Scholar 

  • Amaludin, A., Marto, A., Satar, M. H. M., Amaludin, I. T., & Dullah, S. (2016). Thermal properties of Malaysian cohesive soils. Jurnal Teknologi, 78, 53–58.

    Article  Google Scholar 

  • Are, K. S., Adelana, A. O., Fademi, I. O., & Aina, O. A. (2018). Improving physical properties of degraded soil: Potential of poultry manure and biochar. Agriculture and Natural Resources, 51(6), 454–462. https://doi.org/10.1016/j.anres.2018.03.009

    Article  Google Scholar 

  • Asiedu, E. K., Ampadu, B., Bonsu, M., & Abunyewa, A. A. (2013). Hydrological and physical changes of soil under cocoa plantation of different ages during the dry season in the transition zone of Ghana. Journal of Natural Sciences Research, 3(7), 52–58.

    Google Scholar 

  • ASTM D4959–07. (2007). Standard test method for determination of water (moisture) content of soil by direct heating. Annual book of ASTM standards. American Society for Testing Materials.

  • ASTM G51–95. (2012). Standard test method for measurement of pH of soil for use in corrosion testing. Annual book of ASTM standards. American Society for Testing Material, New York.

  • ASTM G57–05. (2005). Standard test method for measurement of soil resistivity using two-electrode soil box method. Annual book of ASTM standards. American Society for Testing Materials.

  • Atif Iqbal, M., Salim, A. M. A., Siddiqui, N. A., Baioumy, H., & Ali, S. H. (2017). Petrographic investigations and reservoir potential of shallow marine sandstone: A case study from Nyalau formation, Sarawak Basin Malaysia. ARPN Journal of Engineering and Applied Sciences, 12(22), 6255–6264.

    Google Scholar 

  • Ayoubi, S., Khormah, F., Sahrawat, K. L., & Rodriguez de Lima, A. C. (2011). Assessing impacts of land use change on soil quality indicator in a loessial soil in Golestan Province, Iran. Journal of Agricultural Science and Technology, 13, 717–742.

    Google Scholar 

  • Badmus, B. S., & Olatinsu, O. B. (2010). Aquifer characteristic and groundwater recharge pattern in a typical basement complex, southwestern Nigeria. African Journal of Environmental Science and Technology, 4(6), 328–342.

    Article  Google Scholar 

  • Bertermann, D., Müller, J., Freitag, S., & Schwarz, H. (2018). Comparison between measured and calculated thermal conductivities within different grain size classes and their related depth ranges. Soil Systems, 2, 50. https://doi.org/10.3390/soilsystems2030050

  • Biswas, B., Qi, F., Biswas, J. K., Wijayawardena, A., Khan, M. A. I., & Naidu, R. (2018). The fate of chemical pollutants with soil properties and processes in the climate change paradigm- A review. Soil Systems, 2(51). https://doi.org/10.3390/soilsystems2030051

  • Blažka, P., & Fischer, Z. (2014). Moisture, water holding, drying and wetting in forest soils. Open Journal of Soil Science, 4(5), 174–184. https://doi.org/10.4236/ojss.2014.45021

    Article  Google Scholar 

  • Bruce, R. R., & Klute, A. (1956). The measurement of soil moisture diffusivity. Soil Science Society of America Journal, 20, 458–462.

    Article  Google Scholar 

  • Busby, J., Lewis, M., Reeves, H., & Lawley, R. (2015). Initial geological consideration before installing ground source heat pump systems. Quarterly Journal of Engineering Geology and Hydrogeology, 42, 295–306.

    Article  Google Scholar 

  • Buzmakov, S., Egorova, D., & Gatina, E. (2018). Effects of crude oil contamination on soils of the Ural region. Journal of Soils and Sediments, 19, 38–48. https://doi.org/10.1007/s11368-018-2025-0

  • Cejpek, J., Kuráź, V., & Frouz, J. (2013). Hydrological properties of soils in reclaimed and unreclaimed sites after Brown-Coal Mining. Polish Journal of Environmental Studies, 22(3), 645–652.

    Google Scholar 

  • Chaudhari, P. R., Ahire. D. V., Ahire, V. D., Chkravarthy, M., & Maity, S. (2013). Soil bulk density as related to soil texture, organic matter content, and available total nutrient of Coimbatore soil. International Journal of Scientific and Research Publications, 3(2), 1–8. ISSN 2250–3153.

  • Chew, T. S., Daik, R., & Abdul Hamid, M. A. (2015). Thermal conductivity and specific heat capacity of dodecylbenzenesulfonic acid-doped polyaniline particles- Water Based Nanofluids. Polymers, 7, 1221–1231. https://doi.org/10.3390/polym7071221

    Article  CAS  Google Scholar 

  • Chuchkalov, S., Fadeev, I., Alekseev, V., & Mikhailov, B. (2019). Effect of synthetic detergents on soil erosion resistance. International  Applied Research Conference Bio-Resource Development and Environment Management, KnE Life Sciences, 5(1), 489–496. https://doi.org/10.18502/kis.v5i1.6113

  • Clutter, M., & Ferré, T. P. A. (2018). Examining the potentials and limitations of using temperature tracing to infer water flux through unsaturated soil. Vadose Zone Journal, 17(1), 170181. https://doi.org/10.2136/vzj2017.10.0181

    Article  CAS  Google Scholar 

  • Danso-Boateng, E., Holdich, R. G., Shama, G., Wheatley, A. D., Sohail, M., & Martin, S. J. (2013). Kinetics of faecal biomass hydrothermal carbonization for hydrochar production. Applied Energy, 111, 351–357. https://doi.org/10.1016/j.apenergy.2013.04.090

    Article  CAS  Google Scholar 

  • Draelos, Z. D. (2013). Shampoos, conditioners, and camouflage techniques. Dermatologic Clinics, 31, 173–178.

    Article  CAS  Google Scholar 

  • D’Souza, P., & Rathi, S. K. (2015). Shampoo and conditioners: What a dermatologist should know? Indian Journal of Dermatology, 60, 248–254. https://doi.org/10.4103/0019-5154.156355

  • dela Cruz, A. L. N., Cook, R. L., Lomnicki, S. M., & Dellinger, B. (2012). Effect of low temperature thermal treatment on soils contaminated with Pentachlorophenol and environmentally persistent free radicals. Environmental Science and Technology, 46, 5971–5978.

    Article  CAS  Google Scholar 

  • Delgado-Rodriguez, O., Peinado-Guevara, H. J., Green-Ruiz, C. R., Herrera-Barrientos, J., & Shevnin, V. (2011). Determination of hydraulic conductivity and fines content in soils near an unlined irrigation canal in Guasave, Sinaloa Mexico. Journal of Soil Science and Plant Nutrition, 11(3), 13–31.

    Google Scholar 

  • Devatha, C. P., Vishal, A. V., & Rao, J. P. C. (2019). Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Applied Water Science, 9, 89. https://doi.org/10.1007/s13201-019-0970-4

    Article  CAS  Google Scholar 

  • Dlapa, P., Hriník, D., Hrabovsky, A., Šimkovic, I., Žarnovičan, H., Sekucia, F., & Kollár, J. (2020). The impact of land use on the hierarchical pore size distribution and water retention properties in loamy soils. Water, 12, 339. https://doi.org/10.3390/w12020339

    Article  CAS  Google Scholar 

  • Duo, L., & Hu, Z. (2018). Soil quality change after reclaiming subsidence land with Yellow River sediments. Sustainability, 10, 4310. https://doi.org/10.3390/su10114310

    Article  CAS  Google Scholar 

  • Essenwanger, O. M. (2003). Classification of climates. Elsevier.

    Google Scholar 

  • Fontaras, G., Zacharof, N.-G., & Ciuffo, B. (2017). Fuel consumptions and CO2 emissions from passenger cars in Europe-laboratory versus real-world emissions. Progress in Energy and Combustion Science, 60, 97–131. https://doi.org/10.1016/i.pecs.2016.12.004

    Article  Google Scholar 

  • Eyo, O. I., Sridhar, M. K. C., & Olorunnisola, A. O. (2018). Examining selected physic-chemical properties of soil under contaminated and control conditions. Asian Journal of Advances in Agricultural Research, 7(3), 1–10.

    Article  Google Scholar 

  • Ganiyu, S. A. (2018). Evaluation of soil hydraulic properties under different non-agricultural land use patterns in a basement complex area using multivariate statistical analysis. Environmental Monitoring and Assessment, 190, 595–611. https://doi.org/10.1007/s10661-018-6959

    Article  CAS  Google Scholar 

  • Ganiyu, S. A., Atoyebi, M. K., Are, K. S., Olurin. O. T., & Badmus, B. S. (2019). Soil physicochemical and hydraulic properties of petroleum-derived and vegetable oil-contaminated haplic lixisol and rhodic nitisol in southwest Nigeria. Environmental Monitoring and Assessment, 191, 559–576. https://doi.org/10.1007/s10661-019-7656-0

  • Ganiyu, S. A., Are, K. S., & Olurin, O. T. (2020a). Assessment of geotechnical and physico-chemical properties of age-long greywater-contaminated soils in basement complex areas, southwest Nigeria. Applied Water Science, 10(5), 114–129. https://doi.org/10.1007/s13201-020-01201.7

  • Ganiyu, S. A., Rabiu, J. A., & Olatoye, R. O. (2020b). Predicting hydraulic conductivity around septic tank systems using soil physico-chemical properties and determination of principal soil factors by multivariate analysis. Journal of King Saud University-Science, 32, 555–562. https://doi.org/10.1016/j.jksus.2018.08.008

  • Gavazzoni Dias, M. F. R. (2015). Hair Cosmetics: An Overview. Int J Trichol, 7(1), 2–15. https://doi.org/10.4103/0974-7753.153450

    Article  Google Scholar 

  • Gee, G. W., & Or, D. (2002). Particle-size analysis. In J. H. Dane, & C. C. Topp (Eds.), Method of soil analysis, part 4, Physical method (pp. 255–294). SSSA, Inc. Madison, WI.

  • Gordon, G., Stavi, I., Shavit, U., & Rosenzweig, R. (2018). Oil spill effects on soil hydrophobicity and related properties in a hyper arid region. Geoderma, 312, 114–120.

    Article  CAS  Google Scholar 

  • Grossman, R. B., & Reinsch T. G. (2002). Bulk density and linear extensibility: Core method. In J. H. Dane, & G. C. Topp (Eds.), Methods of soil Analysis, part 4, Physical method (pp. 208–228). SSSA, Inc., Madison, WI.

  • Gubitosa, J., Rizzi, V., Fini, P., & Cosma, P. (2019). Hair care cosmetics: From traditional shampoo to solid clay and herbal shampoo. A Review. Cosmetics, 6, 13. https://doi.org/10.3390/cosmetics6010013

    Article  CAS  Google Scholar 

  • Gülser, C., & Candemir, F. (2014). Using soil moisture constants and physical properties to predict saturated hydraulic conductivity. Eurasian Journal of Soil Science, 3, 77–81.

    Google Scholar 

  • Han, T., Best, A. I., Sothcott, J., North, L. J., & MacGregor, L. M. (2015). Relationships among low frequency (2Hz) electrical resistivity, porosity, clay content and permeability in reservoir sandstones. Journal of Applied Geophysics, 112, 279–289.

    Article  Google Scholar 

  • Hewelke, E., Szatylowicz, J., Hewelke, P., Gnatowski, T., & Aghalarov, R. (2018). The impact of diesel oil pollution on the hydrophobicity and efflux of forest soils. Water, Air & Soil Pollution, 229(2), 51. https://doi.org/10.1007/s11270-018-3720-6

  • Hewelke, E., & Gozdowski, D. (2020). Hydrophysical properties of sandy clay contaminated by petroleum hydrocarbon. Environmental Science and Pollution Research, 27, 9697–9706. https://doi.org/10.1007/s11356-020-07627-5

  • Hillel, D. (2004). Introduction to experimental soil physics. Elsevier Academic Press, Orlando, FL.

    Google Scholar 

  • Hussain, I., Puschenreiter, M., & Gerhard, S. (2019). Differentiation between physical and chemical effects of oil presence in freshly spiked soil during rhizo remediation trial. Environmental Science and Pollution Research, 26, 18451–18464. https://doi.org/10.1007/s11356-019-04819-6

  • Jabbarov, Z., Abdrakhmanov, T., Pulatov, A., Kováčik, P., Pirmatov, K. (2019): Change in the parameters of soils contaminated by oil and oil products. Agriculture (Pol’nohospodárstvo), 65(3), 88–98. https://doi.org/10.2478/agri-2019-0009

  • Ji, W., Khalil, C. A., Jayalakshmamma, M. P., Zhao, L., & Boufadel, M. C. (2021). Behavior of surfactants and surfactant blends in soils during remediation: A review. Environmental Challenges, 2, 100007. https://doi.org/10.1016/j.envc.2020.100007

    Article  CAS  Google Scholar 

  • Igwe, C. A., Zarei, M., & Stahr, K. (2013). Soil hydraulic and physico-chemical properties of Ultisol and InceptIsols in South-Eastern Nigeria. Archive of Agronomy and Soil Science, 59(4), 491–504.

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (IARC). (1989) Summaries and evaluations, Gasoline (group2B) (vol. 45, p. 159).

  • Jones, N., Lourenco, S. D. N., & Paul, A. (2016). Testing surfactants as additives for clay improvement; Compaction and suction effects. E35 Web of Conference, 9, 13006, E-UNSAT 2016. https://doi.org/10.1051/e3sconf/20160913006

  • Karagunduz, A., Young, M. H., & Pennell, K. D. (2015). Influence of surfactants on unsaturated water flow and solute transport. Water Resources Research, 51(4). https://doi.org/10.1002/2014WR015845

  • Kaur, J., Adamchuk, V. I., Whalen, J. K., & Ismail, A. A. (2015). Development of an NDIR CO2 sensor-based system for assessing soil toxicity using substrate-induced respiration. Sensors, 15(3), 4734–4748.

    Article  CAS  Google Scholar 

  • Kerunwa, A., & Ariche, P. O. (2020). Effect of Bio-Disc on distillate yield and crude oil properties. World Journal of Engineering and Technology, 8, 367–381.

    Article  Google Scholar 

  • Key, R. (1992). An introduction to the crystalline basement of Africa. In E. Wright, & W. Burgass (Eds.), Hydrogeology of the crystalline basement aquifer in Africa Geological Society of Special Publication (vol. 66, pp. 29–57). London.

  • Khanna, S. K., Singh, K., Naseer, S., & Sharma, S. (2014). Chemistry of crude oils. International Journal Advance Research Innovative, 2(2), 525–532.

    Google Scholar 

  • Khodaverdiloo, H., Homaee, M., van Genuchten, M. T., & Dashtaki, S. G. (2011). Deriving and validating pedotransfer functions for some calcareous soils. Journal of Hydrology, 399, 93–99.

    Article  CAS  Google Scholar 

  • Klamerus-Iwan, A., Blońska, E., Lasota, J., Kalandyk, A., & Waligórski, P. (2015). Influence of oil contamination on physical and biological properties of forest soil after chain-saw use. Water, Air and Soil Pollution, 226(11), 389. https://doi.org/10.1007/s11270-015-2649

  • Kogbara, R. B., Al-Tabbaa, A., & Stegemann, J. A. (2014). Comparisons of operating envelopes for contaminated soil stabilized/solidified with different cementitious binders. Environmental Science and Pollution Research, 21(5), 3395–3414.

    Article  CAS  Google Scholar 

  • Kumar, A., Sharma, A., & Upadhyaya, K. C. (2016). Vegetable oil: Nutritional and industrial perspective. Current Genomics, 17(3), 230–240. https://doi.org/10.2174/138920291766160202220107

    Article  CAS  Google Scholar 

  • Lee, D. -H., Cody, R. D., Kim, D. -J., & Choi, S. (2002): Effect of soil texture on surfactant-based remediation of hydrophobic organic-contaminated soil. Environment International, 27, 681–688.

  • Li, P., Karunanidhi, D., Subramani, T., & Srinivasamoorthy, K. (2021). Sources and consequences of groundwater contamination. Archives of Environmental Contamination and Toxicology, 80, 1–10. https://doi.org/10.1007/s00244-020-00805-z

    Article  CAS  Google Scholar 

  • López-Acosta, N. P., Zaragoza-Cardiel, A. I., & Barba-Galdámez, D. F. (2021). Determination of thermal conductivity properties of coastal soils from GSHPs and energy geostructure applications in Mexico. Energies, 14, 5479. https://doi.org/10.3390/en14175479

  • Maphuhla, N. G., Lewu, F. B., & Oyedeji, O. O. (2021). The effects of physico-chemical parameters on analyzed soil enzyme activity from Alice landfill site. International Journal of Environmental Research and Public Health, 18, 221. https://doi.org/10.3390/ijerph18010221

    Article  CAS  Google Scholar 

  • Maurya, R., Chandel, A., Kumar, U. (2006). Comparative study of various soils upon addition of different material on the basis of hydraulic conductivity parameter. International Journal of Engineering Research and Technology (IJERT), 5(5), 107–111.

  • Mohawesh, O., Mahmoud, M., Janssen, M., & Lennartz, B. (2013). Effect of irrigation with olive mill wastewater on soil hydraulic and solute transport properties. International Journal of Environmental Science and Technology, 11, 927–934. https://doi.org/10.1007/s13762-013-0285-1

    Article  CAS  Google Scholar 

  • Morais, T. S. O., & Tsuha, C. H. C. (2018). In-situ measurements of the soil thermal properties for energy foundation applications in Sao Paulo, Brazil. Bulgarian Chemical Communications, 50, 34–41.

    Google Scholar 

  • NGSA. (2016). Geological and mineral resources map of Ogun State, Nigeria. Nigerian Geological Survey Agency, Abuja, Nigeria.

  • Nik Daud, N. N., Muhammad, A. S., Misban, N. K., & Yaacob, W. Z. W. (2016). Attenuation capacity of soil mixed with palm oil fuel ash (POFA) linear for treating leachate. Jurnal Teknologi, 78(8–6), 99–103.

    Google Scholar 

  • Odebode, A. J., Njoku, K. L., Adesuyi, A. A., & Akinola, M. O. (2021). Phytoremediation of spent oil and palm kernel sludge contaminated soil using sunflower (Helianthus annuus) L. Journal of Applied Sciences and Environmental Management, 25(5), 877–885. https://doi.org/10.4314/jasem.v25i5.30

  • Ogori, A. F. (2020). Source, extraction and constituents of fats and oils. Journal of Food Science and Nutrition, 6, 060. https://doi.org/10.24966/FSN-1076/100060

  • Oyenuga, I. F., Oyejola, B. A., & Olajide, J. T. (2016). Statistical modelling of quarterly record of rainfall distribution in southwest Nigeria. Science Journal of Applied Mathematics and Statistics, 4(2), 52–58.

    Article  Google Scholar 

  • Peng, Z., Darnault, C. J. G., Tian, F., Bayeye, P. C., & Hu, H. (2017). Influence of anionic surfactant on saturated hydraulic conductivity of loamy sand and sandy loam soils. Water, 9, 433. https://doi.org/10.3390/w9060433

    Article  CAS  Google Scholar 

  • Price, K., Jackson, C. R., & Parker, A. J. (2010). Variation of surficial soil hydraulic properties across land uses in the southern Blue Ridge Mountains, North Carolina, USA. Journal of Hydrology, 383, 256–268.

    Article  CAS  Google Scholar 

  • Rahman, Z. A., Shaibin, A. R., Lihan, T., Idris, W. M. R., & Sakina, M. (2013). Effects of surfactant on geotechnical characteristics of Silty soil. Sains Malaysiana, 42(7), 881–891.

    CAS  Google Scholar 

  • Rahman, M. A., Tantikitti, C., Suanyuk, N., Forster, I., Hlongahlee, B., & Tunpairoj, W. (2022). Effect of fish oil replacement by a combination of soybean and palm oil in Asian seabass (Lates calcarifer) diet on growth, fatty acid profile, digestive enzyme activity, immune parameters and salinity challenge. Songklanakarin Journal of Science & Technology, 44(1), 79–90.

    CAS  Google Scholar 

  • Rakowska, J. (2020). Remediation of diesel-contaminated soil enhanced with firefighting foam application. Scientific Reports, 10, 8824. https://doi.org/10.1038/s41598-020-65660-3

    Article  CAS  Google Scholar 

  • Ramli, H., & Zabidi, H. A. (2016). Effect of oil spill on hydraulic properties of soil. Malaysian Construction Research Journal, 19(2), 49–56.

    Google Scholar 

  • Ren, M., Yuan, X., Zhu, Y., Huang, H., et al. (2014). Effect of different surfactants on thermal efficiency of heavy metals on sewage sludge treated by a novel method combining bio-acidification with Fenton oxidation. Journal of Central South University, 21, 4623–4629. https://doi.org/10.1007/s11771-014-2469-3

  • Reynolds, W. D., & Elrick, D. E. (2002). Constant head soil core (tank) method. In J. H. Dane, & G. C. Topp (Eds.), Methods of soil analysis, Part 4, Physical methods (pp. 804–808). SSSA Book Series 5, Soil Science Society of America, Madison, Wisconsin.

  • Rodrigo-Comino, J., Keshavarzi, A., Bagherzadeh, A., & Brevik, E. C. (2019). The use of multivariate statistical analysis and soil quality indices as tools to be included in regional management plans. A case study from the Mashhad Plain, Iran. Geographical Research Letters, 45(2), 687–708.

  • Rodríguez-Rodrígues, N., Rivera-Cruz, M. C., Trujillo-Narcía, A., Almaráz-Suárez, J. J., & Salgado-Gracía, S. (2016). Spatial distribution of oil and biostimulation through the rhizosphere of Leersia hexandra in degraded soil. Water, Air, and Soil Pollution, 227(9), 319. https://doi.org/10.1007/s11270-016-3030-9

  • Roslan, A., Ibraheem, A. S., & Hadi, A. (2016). Metal additives composition and its effect on lubricant characteristics. AIP Conference Proceedings, 1774, 040001. https://doi.org/10.1063/1.4965083

  • Roxy, M. S., Sumitharanand, V. B., & Renuka, G. (2014). Estimation of soil moisture and its effect on soil thermal characteristics at Astronomical Observatory, Thiruvananthapuram, South Kerala. Journal of Earth System Science, 123(3), 1793–1807.

    Article  Google Scholar 

  • Rózański, A., & Sobótka, M. (2013). On the interpretation of the needle probe test results. Thermal conductivity measurement of clayey soil. Studia Geotechnica et Mechanica, 35(1), 195–207. https://doi.org/10.2478/sgem-2013-0015

  • Salako, A. O., & Adepelumi, A. A. (2016). Evaluation of hydraulic conductivity of subsoil using electrical resistivity and ground penetrating radar data: example from southwestern Nigeria. International Journal of Geo-Engineering, 7(5), 1–26. https://doi.org/10.1186/s40703-016-0018-7

  • Sangeetha, V., Thenmozhi, A., & Devasena, M. (2020). Enhanced removal of lead from soil using biosurfactant derived from edible oils. Soil and Sediment Contamination: An International Journal, 30(2), 135–147. https://doi.org/10.1080/15320383.2020.1811204

    Article  CAS  Google Scholar 

  • Sarabi, S. G., & Sepaskhah, A. R. (2013). Effect of zeolite and saline water application on saturated hydraulic conductivity and infiltration in different soil textures. Archives of Agronomy and Soil Science, 59(5), 753–764. https://doi.org/10.1080/03650340.2012.675626

    Article  CAS  Google Scholar 

  • Sarki, A., Mirjat, M. S., Mahessar, A. A., Kori, S. M., & Qureshi, A. L. (2014). Determination of saturated hydraulic conductivity of different soil texture materials. IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS), 7(12), 56–62.

  • Schulze, S., Zahn, D., Montes, R., Rodil, R., Quintana, J. B., Knepper, T. P., Reemstsma, T., & Berger, U. (2019). Occurrence of emerging persistent and mobile organic contaminants in European water samples. Water Research, 153, 80–90.

    Article  CAS  Google Scholar 

  • Schwarz, H., & Bertermann, D. (2020). Meditate relation between electrical and thermal conductivity of soil. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6, 50. https://doi.org/10.1007/s40948-020-00173-x

    Article  Google Scholar 

  • Shahabuddin, M., Masjuki, H. H., Kalam, M. A., Bhuiya, M. M. K., & Mehat, H. (2013). Comparative tribological investigation of bio-lubricant formulated from a non-edible oil source (Jatropha oil). Industrial Crops and Products, 47, 323–330.

    Article  CAS  Google Scholar 

  • Sharma, B., & Bhattacharya, S. (2017). Soil bulk density as related to soil texture, moisture content, pH, EC, OC, OMC, and available macro nutrients of Pandoga sub watershed, Una district of H.P. (India). International Journal of Developmental Research, 13(12), 72–76.

  • Shifa, N., & Thomas, U. (2017). A study on the effect of surfactants on soil water systems. International Conferences on Geotechniques for Infrastructure Projects, 27–28.

  • Shojaeiarani, J., Bajawa, D. S., & Bajawa, S. G. (2019). Properties of densified solid biofuels in relation to chemical composition, moisture content, and bulk density of the biomass. BioResources, 14(2), 4496–5015.

    Google Scholar 

  • Singare, P. U., Trivedi, M. P., & Mishra, R. M. (2012). Assessing the physic-chemical parameters of sediment ecosystem of Vasai Creek at Mumbai, India. Marine Science, 1(1), 22–29. https://doi.org/10.5923/j.ms.20110101.03

  • Sörengärd, M., Lindh, A.-S., & Ahrens, L. (2020). Thermal desorption as a high removal remediation technique for soils contaminated with per- and polyfluoroalkyl substances (PFASs). PLoS ONE, 15(6), e0234476. https://doi.org/10.1371/journal.pone.0234476

  • Suppajariyawat, P., Belchior de Andrade, A. F., Elie, M., Baron, M., & Gonzalez-Rodriguez, J. (2019). The use of chemical composition and additives to classify petrol and diesel using gas chromatography-mass spectrometry and chemometric analysis: A UK study. Open Chemistry, 17, 183–197.

    Article  CAS  Google Scholar 

  • Takawira, A., Gwenzi, W., & Nyamugafata, P. (2014). Does hydrocarbon contamination induce water repellency and changes in hydraulic properties in inherently wettable tropical sandy soil? Geoderma, 235–236, 279–289. https://doi.org/10.1016/jgeoderma.2014.07.023

    Article  Google Scholar 

  • Tarr, M. A., Zito, P., Overton, E. B., Olson, G. M., Adhikari, P. L., & Reddy, C. M. (2016). Weathering of oil-spilled in the marine environment. Oceanography, 29(3), 126–135. http://www.jstor.org/stable/24862715. Accessed April 2022.

  • Tatiana, D. G., Christopher, L., & Josué Eló, G. C. (2015). Hydraulic characterization from porous aquifers of the Brazilian Federal Districts. Brazilian Journal of Geology, 45(2), 259–271. https://doi.org/10.1590/23174889201500020006

  • Tian, Z., Lu, Y., Ren, T., Horton, R., & Heitman, J. L. (2018). Improved thermo-time domain reflectometry method for continuous in-situ determination of bulk density. Soil & Tillage Research, 178, 118–129. https://doi.org/10.1016/j.still.2017.12.021

    Article  Google Scholar 

  • Ufoegbune, G. C., Oyedepo, J., Awomeso. J. A., & Eruola A. O. (2010). Spatial analysis of municipal water supply in Abeokuta metropolis, southwestern Nigeria. REAL CORP 2010. Proceedings/Tagungsband Vienna, 18–20th May, 2010.

  • Ullah, R., Aslam, Z., Khaliq, A., & Zahir, Z. A. (2018). Sunflower residue incorporation suppresses weeds, enhanced soil properties and seed yield of spring-planted Mung Bean. Planta Daninha, 36, e018176393.

    Google Scholar 

  • Uzoije, A. P., & Agunwamba, J. C. (2011). Physico-chemical properties of soil in relation to varying rates of crudes oil pollution. Journal of Environmental Science and Technology, 4, 313–323.

    Article  CAS  Google Scholar 

  • Vázquez, B., Bandala, E. R., Reyes, R., & Torres, L. G. (2010). Variation of mechanical and hydraulic properties of oil-contaminated soil due to a surfactant-enhanced washing process. Soil and Sediment Contamination: An International Journal, 19, 531–546. https://doi.org/10.1080/15320383.2010.499922

    Article  CAS  Google Scholar 

  • Vidonish, J. E., Zygourakis, K., Masiello, C. A., Gao, X., Mathieu, J., & Alvarez, P. J. J. (2016). Pyrolytic treatment and fertility enhancement of soils contaminated with heavy hydrocarbons. Environmental Science & Technolnology, 50(5), 2498–2506. https://doi.org/10.1021/acs.est.5602620

  • Wang, Y., Lu, Y., Horton, R., & Ren, T. (2019). Specific heat capacity of soil solids: Influences of clay content, organic matter and tightly bound water. Soil Science Society of America Journal, 83(4), 1062–1066. https://doi.org/10.2136/ssaj2018.11.0434

    Article  CAS  Google Scholar 

  • Wei, Y., Wang, Y., Han, J., Cai, M., Zhu, K., & Wang, Q. (2019). Analysis of water retention characteristics of oil- polluted earthly materials with different textures based on van Genuchten model. Journal of Soils and Sediments, 19, 373–380. https://doi.org/10.1007/s11368-018-2026-z

    Article  Google Scholar 

  • Yi, Y. M., Park, S., Munster, C., Kim, G., & Sung, K. (2016). Changes in ecological properties of petroleum oil-contaminated soil after low-temperature thermal desorption treatment. Water, Air and Soil Pollution, 227, 108. https://doi.org/10.1007/s11270-016-2804-4

  • Zahermand, S., Vafaeian, M., & Bazyar, M. H. (2020). Analysis of the physical and chemical properties of soil contaminated with oil (petroleum) hydrocarbons. Earth Sciences Research Journal, 24(2), 163–168.

    Article  Google Scholar 

  • Zhang, T., Cai, G., Liu, S., & Puppala, A. J. (2017). Investigation on thermal characteristics and prediction models of soils. International Journals of Heat and Mass Transfer, 106, 1074–1086.

    Article  Google Scholar 

  • Zhang, X., Zhu, J., Wendroth, O., Matocha, C., & Edwards, D. (2019). Effect of macroporosity on pedotransfer function estimates at the field scale. Vadose Zone Journal, 18, 180151. https://doi.org/10.2136/vzj2018.08.0151

    Article  Google Scholar 

  • Zhang, Y.-W., Wang, K.-B., & Wang, j., Liu, C., Shangguan, Z.-P. (2021). Changes in soil water holding capacity and water availability following vegetation restoration on the Chinese Loess Plateau. Scientific Reports, 11, 9692. https://doi.org/10.1038/s41598-021-88914-0

    Article  CAS  Google Scholar 

  • Zhang, X., Zhang, X., Wang, S., & Zhao, S. (2022). Improved remediation of co-contaminated soils by heavy metals and PAHs with bio surfactant-enhanced soil washing. Scientific Reports, 12, 3801. https://doi.org/10.1038/s41598-022-07577-7

    Article  CAS  Google Scholar 

  • Zhao, P., Shen, Y., Ge, S., Chen, Z., & Yoshikawa, K. (2014). Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. Applied Energy, 131, 345–367. https://doi.org/10.1016/j.apenergy.2014.06.038

    Article  CAS  Google Scholar 

  • Zhou, W., Han, G., Liu, M., & Li, X. (2019). Effect of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand. PeerJ, 7, e7880. https://doi.org/10.7717/peerj.7880

  • Zhou, W., Han, G., Liu, M., Zeng, J., Liang, B., Liu, J., & Qu, R. (2020). Determining the distribution and interaction of soil organic carbon, nitrogen, pH, and texture in soil profiles: A case study in the Lancangjiang River Basin, Southwest China. Forests, 11(5), 532. https://doi.org/10.3390/f11050532

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute to the study conception and design. Material preparation, data collection as well as analyses were performed by SAG, OTO, DOM, OM, and JAR.

Corresponding author

Correspondence to S. A. Ganiyu.

Ethics declarations

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganiyu, S.A., Olurin, O.T., Morakinyo, D.O. et al. Physico-chemical and thermal characteristics of sandy loam soils contaminated by single and mixed pollutants (mineral and vegetable oils). Environ Monit Assess 194, 454 (2022). https://doi.org/10.1007/s10661-022-10126-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10126-4

Keywords

Navigation