Skip to main content
Log in

Baseline values and environmental assessment for metal(loid)s in soils under a tropical rainy climate in a Colombian region

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The baseline values for metal(loid)s in soils are known as a tool for the evaluation, prevention, and monitoring of the environmental quality of the soil. The main aim is to propose baseline values for metal(loid)s through the analysis of the concentrations in soils within natural areas; additionally, this study attempts to assess the environmental quality of soils in agricultural areas. The study was developed in the Piedemonte Llanero from Colombia a region with more than 5000 mm year−1 of pluviometry. A total of 90 soil samples were collected in agricultural and natural areas. Chemical analysis was conducted by acid digestion following the method EPA 3050B and determined the metal(loid)s (Al, As, Fe, Cd, Cr, Cu, Mg, Mn, Ni, Pb, and Zn) through ICP-OES. This is the first time that baseline values are proposed for a region in Colombia. The values proposed (expressed in mg kg−1) are Cd (0.3), As (2.8), Cu (9.9), Ni (10.2), Pb (11.3), Cr (21.1), Zn (28.2), Mn (83.8), Mg (348), Fe (22,775), and Al (28,975). These values are comparatively lower than those reported for other regions in Latin America and the rest of the world. Also, agricultural soils are not contaminated. The possible explanation is as a consequence of the intense washing caused by the intense rainfall of the place. The results also demonstrated that the soils in this region are not contaminated. Finally, these advances will allow public and private organizations to establish criteria for the environmental and sustainable management of soils, especially on agricultural activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable. All data are included in the paper.

References

  • Alfaro, M. R., Montero, A., Ugarte, O. M., & do Nascimento, C. W. A., de Aguiar Accioly, A. M., Biondi, C. M., & da Silva, Y. J. A. B. (2015). Background concentrations and reference values for heavy metals in soils of Cuba. Environmental Monitoring and Assessment, 187(1), 1–10.

    Article  CAS  Google Scholar 

  • Alleoni, L. R. F., Mello, J. D., & Rocha, W. D. (2009). Eletroquímica, adsorção e troca eosta no solo. Alleoni, LRF; Mello, VF Química e eostatisti do solo. Parte II-Aplicações. Viçosa: Sociedade Brasileira de Ciência do Solo, 69–130.

  • Alloway, B. J. (1990). Soil processes and the behaviour of metals. Heavy metals in soils., 7–28.

  • Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. In Heavy metals in soils (pp. 11–50). Springer, Dordrecht.

  • Almeida Júnior, A. B., Nascimento, C. W. A., Biondi, C. M., Souza, A. P., & Barros, F. M. R. (2016). Background and reference values of metals in soils from Paraíba State, Brazil. Revista Brasileira de Ciência do Solo40, 1–13. https://doi.org/10.1590/18069657rbcs20150122

  • Bai, Z., Caspari, T., Gonzalez, M. R., Batjes, N. H., Mäder, P., Bünemann, E. K., & Tóth, Z. (2018). Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agriculture, ecosystEMs & Environment, 265, 1–7.

    Article  Google Scholar 

  • Bech, J., Roca, N., Tume, P., Salazar, I., Martínez-Sánchez, M. J., & Pérez-Sirvent, C. (2013, April). Baseline levels of potentially toxic elements in soils: A case study in Puren, La Araucania, Chile. In EGU General Assembly Conference Abstracts (pp. EGU2013–2437).

  • Bhunia, G. S., Shit, P. K., & Chattopadhyay, R. (2018). Assessment of spatial variability of soil properties using geostatistical approach of lat- eritic soil (West Bengal, India). Ann Agrar Sci, 16(4), 436–443. https://doi.org/10.1016/j.aasci.2018.06.003

    Article  Google Scholar 

  • Bini, C., Sartori, G., Wahsha, M., & Fontana, S. (2011). Background levels of trace elements and soil geochemistry at regional level in NE Italy. Journal of Geochemical Exploration, 109(1–3), 125–133.

    Article  CAS  Google Scholar 

  • Biondi, C. M., Nascimento, C. W. A. D., Fabricio Neta, A. D. B., & Ribeiro, M. R. (2011). Teores de Fe, Mn, Zn, Cu, Ni e Co em solos de eostatist de Pernambuco. Revista Brasileira De Ciência Do Solo, 35(3), 1057–1066.

    Article  CAS  Google Scholar 

  • Bocardi, J. M. B., Pletsch, A. L., & Quinaia, S. P. (2020). Quality reference values for heavy metals in soils developed from basic rocks under tropical conditions. Journal of Geochemical Exploration, 217, 106591.

    Article  CAS  Google Scholar 

  • Boechat, C. L., Duarte, L. D. S. L., de Sena, A. F. S., & do Nascimento, C. W. A., da Silva, Y. J. A. B., da Silva, Y. J. A. B., … & Saraiva, P. C. (2020). Background concentrations and quality reference values for potentially toxic elements in soils of Piauí state. Brazil. Environmental Monitoring and Assessment, 192(11), 1–12.

    Google Scholar 

  • Bouyoucus, G. I. (1951). A Calibration of the hydrometer metod for making mechinal analysis of the soils. Agronomy Journal 4.9–434.

  • Brus, D. J., Lame, F. P. J., & Nieuwenhuis, R. H. (2009). National baseline survey of soil quality in the Netherlands. Environmental Pollution, 157(7), 2043–2052.

    Article  CAS  Google Scholar 

  • CCME, Canadian Council of Ministers of the Environment. (2013). Canadian soil Quality. Guidelines for the protection of environmental and human health: Barium. In: Canadian environmental quality guidelines. Canadian Council of Ministers of the Environment, Winnipeg.

  • Chen, X. X., Liu, Y. M., Zhao, Q. Y., Cao, W. Q., Chen, X. P., & Zou, C. Q. (2020). Health risk assessment associated with heavy metal accumulation in wheat after long-term phosphorus fertilizer application. Environmental Pollution, 262, 114348.

    Article  CAS  Google Scholar 

  • Chiprés, J. A., Castro-Larragoitia, J., & Monroy, M. G. (2009). Exploratory and spatial data analysis (EDA–SDA) for determining regional background levels and anomalies of potentially toxic elements in soils from Catorce-Matehuala. Mexico. Applied Geochemistry, 24(8), 1579–1589.

    Article  CAS  Google Scholar 

  • CONAMA- Conselho Nacional do Meio Ambiente. Resolução no 420, de 28 de dezembro de 2009. Diário Oficial [da República Federativa do Brasil], Brasília, DF, n° 249, de 30/12/2009, 81- 84p. http://www.mma.gov.br/port/conama/legiano1.cfm?codlegitipo=3&ano=2009. Accessed 23 marzo 2021).

  • CORMACARENA. (2012) Plan de ordenación y manejo de la cuenca del río Acacias – Pajure. Villavicencio. Documento técnico. Corporación para el Desarrollo Sostenible del Área de Manejo Especial La Macarena 160p.

  • de Mattos, A. G. D., Lima, E. S. A., Amaral Sobrinho, N. M. B. D., Zoffoli, H. J. D. O., & Pérez, D. V. (2018). Multivariate analyses to establish reference values for soils in Médio Paraíba, state of Rio de Janeiro. Brazil. Revista Ciência Agronômica, 49(1), 1–10.

    Google Scholar 

  • de Souza, J. J. L. L., Abrahão, W. A. P., de Mello, J. W. V., da Silva, J., da Costa, L. M., & de Oliveira, T. S. (2015). Geochemistry and spatial variability of metal (loid) concentrations in soils of the state of Minas Gerais, Brazil. Science of the Total Environment, 505, 338–349.

    Article  CAS  Google Scholar 

  • EPA. (1996). 3050B method—acid digestion of sediments, sludges and soils. Available at: https://www.epa.gov/sites/default/files/2015-06/documents/epa-3050b.pdf. Accessed on Febrero 2021.

  • Esmaeili, A., Moore, F., Keshavarzi, B., Jaafarzadeh, N., & Kermani, M. (2014). A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone. Iran. Catena, 121, 88–98.

    Article  CAS  Google Scholar 

  • Fadigas, F. D. S., Sobrinho, N. M. D. A., Mazur, N., & Cunha dos Anjos, L. H. (2006). Estimation of reference values for cadmium, cobalt, chromium, copper, nickel, lead, and zinc in Brazilian soils. Communications in Soil Science and Plant Analysis, 37(7–8), 945–959.

    Article  CAS  Google Scholar 

  • Faridullah, F., Umar, M., Alam, A., Sabir, M. A., & Khan, D. (2017). Assessment of heavy metals concentration in phosphate rock deposits, Hazara basin. Lesser Himalaya Pakistan. Geosciences Journal, 21(5), 743–752.

    CAS  Google Scholar 

  • Fernandes, A. R., de Souza, E. S., de Souza Braz, A. M., Birani, S. M., & Alleoni, L. R. F. (2018). Quality reference values and background concentrations of potentially toxic elements in soils from the Eastern Amazon, Brazil. Journal of Geochemical Exploration, 190, 453–463.

    Article  CAS  Google Scholar 

  • Galán, E., Fernández-Caliani, J. C., González, I., Aparicio, P., & Romero, A. (2008). Influence of geological setting on geochemical baselines of trace elements in soils. Application to soils of South–West Spain. Journal of Geochemical Exploration98(3), 89–106.

  • Golia, E. E., Dimirkou, A., & Mitsios, I. K. (2008). Influence of some soil parameters on heavy metals accumulation by vegetables grown in agricultural soils of different soil orders. Bulletin of Environmental Contamination and Toxicology, 81(1), 80–84.

    Article  CAS  Google Scholar 

  • Golia, E. E., Tsiropoulos, G. N., Füleky, G., & Vleioras, S. (2019). Pollution assessment of potentially toxic elements in soils of different taxonomy orders in central Greece. Environmental Monitoring and Assessment, 191(2), 106.

    Article  CAS  Google Scholar 

  • Guevara, Y. Z. C., Souza, J. J. L. L. D., Veloso, G. V., Veloso, R. W., Rocha, P. A., Abrahão, W. A. P., & Fernandes Filho, E. I. (2018). Reference values of soil quality for the Rio Doce Basin. Revista Brasileira de Ciência do Solo, 42.

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water research, 14(8), 975–1001.

  • Heuvelink, G. B. M., & Webster, R. (2001). Modelling soil variation: Past, present, and future. Geoderma, 100(3–4), 269–301. https://doi.org/10.1016/S0016.7061(01)00025.8

  • Holmgren, G. G. S., Meyer, M. W., Chaney, R. L., & Daniels, R. B. (1993). Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America (Vol. 22, No. 2, pp. 335–348). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  • Huang, S. W., & Jin, J. Y. (2008). Status of heavy metals in agricultural soils as affected by different patterns of land use. Environmental Monitoring and Assessment, 139(1), 317–327.

    Article  CAS  Google Scholar 

  • IGAC. (2004). Estudio General de Suelos y Zonificación de Tierras de Meta. Estudio General. Instituto Geográfico Agustín Codazzi. Colombia.

  • IDEAM, SGC. (2016). Explanatory memory of the zoning of susceptibility and relative threat by mass movements scale 1:100,000 Plate 266 – Villavicencio. Instituto de Hidrología, Meteorología y Estudios Ambientales – Servicios Geológico Colombiano. Bogotá. 49 pages. https://recordcenter.sgc.gov.co/B22/481_17AmeMM266_Villavicencio/Documento/Pdf/MemoAme266.pdf

  • Jackson, M. L. (1967). Soil chemical analysis (p. 498). Prentice-Hall of Indian Pvt. Ltd.

    Google Scholar 

  • Jamioy-Orozco, D. D., Menjivar Flores, J. C., & Rubiano Sanabria, Y. (2015). Indicadores químicos de calidad de suelos en sistemas productivos del Piedemonte de los Llanos Orientales de Colombia. Acta Agronómica, 64(4), 302–307.

    Article  Google Scholar 

  • Jiang, H. H., Cai, L. M., Hu, G. C., Wen, H. H., Luo, J., Xu, H. Q., & Chen, L. G. (2021). An integrated exploration on health risk assessment quantification of potentially hazardous elements in soils from the perspective of sources. Ecotoxicology and Environmental Safety, 208, 111489.

    Article  CAS  Google Scholar 

  • Jimenez-Ballesta, R., Bueno, P., Rubi, J., & Giménez, R. (2010). Pedo-geochemical baseline content levels and soil quality reference values of trace elements in soils from the Mediterranean (Castilla La Mancha, Spain). Open Geosciences, 2(4), 441–454.

    Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). CRC Press.

    Google Scholar 

  • Karlen, D. L., Ditzler, C. A., & Andrews, S. S. (2003). Soil quality: Why and how? Geoderma, 114(3–4), 145–156.

    Article  CAS  Google Scholar 

  • Lima, E. S. A., de Santana Matos, T., Pinheiro, H. S. K., Guimarães, L. D. D., Pérez, D. V., & do Amaral Sobrinho, N. M. B. (2018). Soil heavy metal content on the hillslope region of Rio de Janeiro, Brazil: Reference values. Environmental Monitoring and Assessment, 190(6), 1–11.

    Article  CAS  Google Scholar 

  • Mahecha-Pulido, J. D., Trujillo-González, J. M., & Torres-Mora, M. A. (2017). Análisis de estudios en metales pesados en zonas agrícolas de Colombia. Oronoquia, 21, 83–93.

    Article  Google Scholar 

  • Mahecha-Pulido, J. D., Trujillo-González, J. M., & Torres-Mora, M. A. (2015). Contenido de metales pesados en suelos agrícolas de la región del Ariari. Departamento Del Meta. Orinoquia, 19(1), 118–122.

    Google Scholar 

  • Martinez-Lladó, X., Vilà, M., Martí, V., Rovira, M., Domènech, J. A., & Pablo, J. D. (2008). Trace element distribution in topsoils in Catalonia: Background and reference values and relationship with regional geology. Environmental Engineering Science, 25(6), 863–878.

    Article  CAS  Google Scholar 

  • Martínez, L. L. G., & Poleto, C. (2014). Assessment of diffuse pollution associated with metals in urban sediments using the geoaccumulation index (Igeo). Journal of Soils and Sediments, 14(7), 1251–1257.

    Article  CAS  Google Scholar 

  • Mazhari, S. A., Attar, R. S., & Haghighi, F. (2017). Heavy metals concentration and availability of different soils in Sabzevar area, NE of Iran. Journal of African Earth Sciences, 134, 106–112.

    Article  CAS  Google Scholar 

  • Micó, C., Peris, M., Recatalá, L., & Sánchez, J. (2007). Baseline values for heavy metals in agricultural soils in an European Mediterranean region. Science of the Total Environment, 378(1–2), 13–17.

    Article  CAS  Google Scholar 

  • Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65(5), 863–872.

    Article  CAS  Google Scholar 

  • Montagnini, F., & Jordan, C. F. (2002). Reciclaje de nutrientes. Ecología y conservación de bosques neotropicales. Editorial tecnológica, Cartago, Costa Rica, 167–191.

  • Müller, G. (1969). Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal, 2(3), 108–118.

    Google Scholar 

  • Müller, G. (1981). The heavy metal pollution of the sediments of neckars and its tributary. A Stocktaking Chemische Zeit, 150, 157–164.

    Google Scholar 

  • Palumbo, B., Angelone, M., Bellanca, A., Dazzi, C., Hauser, S., Neri, R., & Wilson, J. (2000). Influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily. Italy. Geoderma, 95(3–4), 247–266.

    Article  CAS  Google Scholar 

  • Python, (3.8.6). (2008). [Programación]. Python Software Foundation (PSF). https://www.phython.org

  • Ramos-Miras, J. J., Roca-Perez, L., Guzmán-Palomino, M., Boluda, R., & Gil, C. (2011). Background levels and baseline values of available heavy metals in Mediterranean greenhouse soils (Spain). Journal of Geochemical Exploration, 110(2), 186–192.

    Article  CAS  Google Scholar 

  • Reimann, C., & De Caritat, P. (2012). Chemical elements in the environment: Factsheets for the geochemist and environmental scientist. Springer Science & Business Media.

  • Salminen, R., & Tarvainen, T. (1997). The problem of defining geochemical baselines. A case study of selected elements and geological materials in Finland. Journal of Geochemical Exploration, 60(1), 91–98.

  • Schjonning, P., Elmholt, S., & Christensen, B. T. (2004). Soil quality management–Concepts and terms. Managing soil quality: Challenges in modern Agriculture, 1–15.

  • Scipy, (1.6.1). (2017). [Software de análisis numérico]. Scipy Team. http://www.scipy.org

  • Shan, Y., Tysklind, M., Hao, F., Ouyang, W., Chen, S., & Lin, C. (2013). Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS. Journal of Soils and Sediments, 13(4), 720–729.

    Article  CAS  Google Scholar 

  • Shivhare, L., & Sharma, S. (2012). Effect of toxic heavy metal contaminated soil on an ornamental plant Georgina wild (Dahlia). Journal of Environmental & Analytical Toxicology, 2(7), 1–3.

    Article  Google Scholar 

  • Soil Survey Division Staff. (2017). Soil survey manual. Agriculture handbook No. 18.

  • Sollitto, D., Romic, M., Castrignanò, A., Romic, D., & Bakic, H. (2010). Assessing heavy metal contamination in soils of the Zagreb region (Northwest Croatia) using multivariate geostatistics. CATENA, 80(3), 182–194.

    Article  CAS  Google Scholar 

  • Sposito, G. (2008). The chemistry of soils. Oxford University Press.

    Google Scholar 

  • Sun, Y., Li, H., Guo, G., Semple, K. T., & Jones, K. C. (2019). Soil contamination in China: Current priorities, defining background levels and standards for heavy metals. Journal of Environmental Management, 251, 109512.

    Article  Google Scholar 

  • Taboada-Castro, M., Diéguez-Villar, A., Rodríguez-Blanco, M. L., & Taboada-Castro, M. T. (2012). Agricultural impact of dissolved trace elements in runoff water from an experimental catchment with land-use changes. Communications in Soil Science and Plant Analysis, 43(1–2), 81–87.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265.

    Article  Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1), 566–575.

    Article  Google Scholar 

  • Trujillo-González, J. M., Mahecha-Pulido, J. D., Torres-Mora, M. A., Brevik, E. C., Keesstra, S. D., & Jiménez-Ballesta, R. (2017). Impact of potentially contaminated river water on agricultural irrigated soils in an equatorial climate. Agriculture, 7(7), 52.

    Article  CAS  Google Scholar 

  • Trujillo-González, J. M., Torres-Mora, M. A., Keesstra, S., Brevik, E. C., & Jiménez-Ballesta, R. (2016). Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Science of the Total Environment, 553, 636–642.

    Article  CAS  Google Scholar 

  • Trujillo-González, J. M., Mahecha, J. D., & Torres-Mora, M. (2018). El recurso suelo; un análisis de las funciones, capacidad de uso e indicadores de calidad. Revista De Investigación Agraria y Ambiental, 9(2), 31–38.

    Google Scholar 

  • Trujillo-González, J. M., Torres-Mora, M. A., Ballesta, R. J., & Brevik, E. C. (2022). Spatial variability of the physicochemical properties of acidic soils along an altitudinal gradient in Colombia. Environmental Earth Sciences, 81(4), 1–13.

    Article  Google Scholar 

  • Tume, P., Bech, J., Longan, L., Tume, L., Reverter, F., & Sepulveda, B. (2006). Trace elements in natural surface soils in Sant Climent (Catalonia, Spain). Ecological Engineering, 27(2), 145–152.

    Article  Google Scholar 

  • Tume, P., González, E., King, R. W., Cuitiño, L., Roca, N., & Bech, J. (2018). Distinguishing between natural and anthropogenic sources for potentially toxic elements in urban soils of Talcahuano. Chile. Journal of Soils and Sediments, 18(6), 2335–2349.

    Article  CAS  Google Scholar 

  • Wang, S., Ca, L. M., Wen, H. H., Luo, J., Wang, Q. S., & Liu, X. (2019). Spatial dis- tribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Science of the Total Environment, 655, 92–101.

    Article  CAS  Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica Et Cosmochimica Acta, 59(7), 1217–1232.

    Article  CAS  Google Scholar 

  • Yotova, G., Padareva, M., Hristova, M., Astel, A., Georgieva, M., Dinev, N., & Tsakovski, S. (2018). Establishment of geochemical background and threshold values for 8 potential toxic elements in the Bulgarian soil quality monitoring network. Science of the Total Environment, 643, 1297–1303.

    Article  CAS  Google Scholar 

  • Zhao, K., Fu, W., Qiu, Q., Ye, Z., Li, Y., Tunney, H., & Qian, X. (2019). Spatial patterns of potentially hazardous metals in paddy soils in a typical electrical waste dismantling area and their pollution characteristics. Geoderma, 337, 453–462.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by UNILLANOS – ECOPETROL within the framework of agreement No. 5226521. “Aunar esfuerzos para el desarrollo y fortalecimientos con junto de capacidades, con el propósito de promover e impulsar un entorno de crecimiento sostenible en la región de la Orinoquia, mediante la realización de actividades científicas, tecnológicas y de innovación.” Cooperation agreement Nº 10 “Fortalecimiento del proceso de investigación aplicada en la evaluación del recurso hídrico para la construcción de la huella hídrica del río Acacias por medio del desarrollo e implementación de metodologías para la integración de información hídrica, calidad de agua, biota y suelo,” the Gobernación del Meta and the Fondo Social de Educación Superior de la Gobernación del Meta (FSES) and to the staff of the Instituto de Ciencias Ambientales de la Orinoquia Colombiana-ICAOC.

Funding

The financial support was provided by the UNILLANOS — ECOPETROL within the framework of agreement No. 5226521. “Aunar esfuerzos para el desarrollo y fortalecimientos con junto de capacidades, con el propósito de promover e impulsar un entorno de crecimiento sostenible en la región de la Orinoquia, mediante la realización de actividades científicas, tecnológicas y de innovación.” Cooperation agreement Nº 10 “Fortalecimiento del proceso de investigación aplicada en la evaluación del recurso hídrico para la construcción de la huella hídrica del río Acacias por medio del desarrollo e implementación de metodologías para la integración de información hídrica, calidad de agua, biota y suelo”.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by JMTG, MATM, MSG, EFCM and RJB. The statistical analysis was performed by JMTG and MATM. The first draft of the manuscript was written by JMTG and MATM, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juan Manuel Trujillo-González.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manuel Trujillo-González, J., Torres-Mora, M.A., Serrano-Gomez, M. et al. Baseline values and environmental assessment for metal(loid)s in soils under a tropical rainy climate in a Colombian region. Environ Monit Assess 194, 494 (2022). https://doi.org/10.1007/s10661-022-10036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10036-5

Keywords

Navigation