Skip to main content

Advertisement

Log in

Seasonal variations of some soil nutrients in a natural and an agricultural olive grove in Adana, Turkey

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The bioavailability and cycling of nutrients in soil are two of the most important factors for healthy plant growth and development in natural and agricultural ecosystems. Seasonal variations of some soil macronutrient (phosphorus and potassium) and micronutrient (copper, manganese, and zinc) contents were investigated in a natural olive (Olea europaea L.) grove (NO) and an agricultural olive gene garden (OGG) located in Adana, Turkey. Soils were sampled at 0–10 cm and at 10–20 cm depth in the months of November, February, May, and August between 2013 and 2015. Soil phosphorus, potassium, copper, manganese, and zinc contents were in the range between 0.37 and 8.65 mg kg−1, 181.81 and 1030.67 mg kg−1, 1.41 and 2.74 mg kg−1, 13.88 and 51.06 mg kg−1, and 0.39 and 2.27 mg kg−1, respectively. All soil nutrients significantly decreased as soil depth increased in all sampling times (P < 0.05). In general, significant seasonal effects were observed in all soil nutrients at 0–10 cm depth that was more variable than at 10–20 cm depth. Soil phosphorus negatively and positively correlated with soil potassium in NO and in OGG at 0–10 cm depth, respectively (P < 0.05). Soil zinc was negatively and positively correlated with soil phosphorus in NO and in OGG at 10–20 cm depth, respectively (P < 0.05). In conclusion, soil depth might be a more important factor than seasonality on the vertical distribution of soil nutrients in olive groves. In addition, correlations between soil nutrients in this study should be taken into consideration for the optimum management of agricultural practices in biological olive groves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  • Aka Sağlıker, H., & Darici, C. (2005). Nutrient dynamics of Olea europaea l. growing on soils derived from two different parent materials in the Eastern Mediterranean Region (Turkey). Turkish Journal of Botany, 29(4), 255–262.

    Google Scholar 

  • Alam-Eldein, S., Tubeileh, A., Turkelboom, F., Abdeen, M., & Sultan-Tubeileh, K. (2015). Soil potassium is the most important soil factor for rainfed olive (Olea europaea L.) production, X. International Symposium on Modelling in Fruit Research and Orchard Management, Montpellier, France.

  • Ali, S. S., & Mahmood, B. M. (2018). Seasonal nutrients concentration in the soil of several agricultural fields in Baghdad City. IOSR Journal of Pharmacy and Biological Sciences, 13(2), 23–29. https://doi.org/10.9790/3008-1302062329

    Article  Google Scholar 

  • Alloway, B. J. (2009). Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health, 31(5), 537–548. https://doi.org/10.1007/s10653-009-9255-4

    Article  CAS  Google Scholar 

  • Alloway, B. J. (2013). Bioavailability of elements in soil. In O. Selinus (Ed.), Essentials of medical geology (Revised, pp. 351–373). Springer.

    Chapter  Google Scholar 

  • Amlal, F., Drissi, S., Makroum, K., Dhassi, K., Er-Rezza, H., & Aït Houssa, A. (2020). Influence of soil characteristics and leaching rate on copper migration: Column test. Heliyon, 6(2), e03375. https://doi.org/10.1016/j.heliyon.2020.e03375

    Article  Google Scholar 

  • Bolat, İ, & Ömer, K. (2017). Plant nutrients: Sources, functions, deficiencies and redundancy. Journal of Bartin Faculty of Forestry, 19(1), 218–228.

    Google Scholar 

  • Cakmak, I., & Hoffland, E. (2012). Zinc for the improvement of crop production and human health. Plant and Soil, 361, 1–2. https://doi.org/10.1007/s11104-012-1504-0

    Article  CAS  Google Scholar 

  • Cakmak, I., McLaughlin, M. J., & White, P. J. (2017). Zinc for better crop production and human health. Plant and Soil, 411, 1–4. https://doi.org/10.1007/s11104-016-3166-9

    Article  CAS  Google Scholar 

  • Celik, I., Gunal, H., Acir, N., Barut, Z. B., & Budak, M. (2021). Soil quality assessment to compare tillage systems in Cukurova Plain, Turkey. Soil and Tillage Research, 208, 104892. https://doi.org/10.1016/j.still.2020.104892

    Article  Google Scholar 

  • Chaney, R. L. (2010). Cadmium and zinc. In P. S. Hooda (Ed.), Trace elements in soils (pp. 409–439). Blackwell Publishing.

    Chapter  Google Scholar 

  • Chatzistathis, T., & Papaioannou, A. (2019). Correlations between soil exchangeable Ca2+, Mg2+, K+ and foliar nutrient concentrations in mature biological olive groves (Olea europaea L., cv. ‘Chondrolia Chalkidikis’). Communications in Soil Science and Plant Analysis, 50(5), 492–501. https://doi.org/10.1080/00103624.2019.1573251

    Article  CAS  Google Scholar 

  • Chatzistathis, T., Papaioannou, A., Gasparatos, D., & Molassiotis, A. (2017). From which soil metal fractions Fe, Mn, Zn and Cu are taken up by olive trees (Olea europaea L., cv. ‘Chondrolia Chalkidikis’) in organic groves? Journal of Environmental Management, 203(Pt 1), 489–499. https://doi.org/10.1016/j.jenvman.2017.07.079

    Article  CAS  Google Scholar 

  • Chen, C. R., Condron, L. M., Davis, M. R., & Sherlock, R. R. (2003). Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. Forest Ecology and Management, 177(1–3), 539–557. https://doi.org/10.1016/S0378-1127(02)00450-4

    Article  Google Scholar 

  • Chen, Y. X., Wang, Y. P., Lin, Q., & Luo, Y. M. (2005). Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environmental International, 31(6), 861–866. https://doi.org/10.1016/j.envint.2005.05.044

    Article  CAS  Google Scholar 

  • Condit, R., Engelbrecht, B. M. J., Pino, D., Perez, R., & Turner, B. L. (2013). Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proceedings of the National Academy of Sciences, 110(13), 5064–5068. https://doi.org/10.1073/pnas.1218042110

    Article  Google Scholar 

  • Conyers, M. K., Uren, N. C., Helyar, K. R., Poile, G. J., & Cullis, B. R. (1997). Temporal variation in soil acidity. Australian Journal of Soil Research, 35(5), 1115–1129. https://doi.org/10.1071/S97022

    Article  Google Scholar 

  • d’Andria, R., Lavini, A., Morelli, G., Patumi, M., Terenziani, S., Calandrelli, D., & Fragnito, F. (2004). Effects of water regimes on five pickling and double aptitude olive cultivars (Olea europaea L.). The Journal of Horticultural Science and Biotechnology, 79(1), 18–25. https://doi.org/10.1080/14620316.2004.11511731

    Article  Google Scholar 

  • Deliboran, A., Savran, M. K., Dursun, Ö., Eralp, O., Pekcan, T., Turan, H., Aydoğdu, E., Çılgın, İ., Ölmez, H., Savran, Ş., & Nacar, A. S. (2020). Determination of nutritional status of olive (Olea europaea L.) trees grown in Izmir and Mugla Province in terms of boron and the other microelements with soil and leaf analyzes. Tekirdağ Ziraat Fakültesi Dergisi, 17(3), 392–405. https://doi.org/10.33462/jotaf.701037

  • Fernández, J. E., Moreno, F., Cabrera, F., Arrue, J. L., & Martín-Aranda, J. (1991). Drip irrigation, soil characteristics and the root distribution and root activity of olive trees. Plant and Soil, 133(2), 239–251.

    Article  Google Scholar 

  • Frossard, E., Condron, L. M., Oberson, A., Sinaj, S., & Fardeau, J. C. (2000). Processes governing phosphorus availability in temperate soils. Journal of Environmental Quality, 29, 15–23. https://doi.org/10.2134/jeq2000.00472425002900010003x

    Article  CAS  Google Scholar 

  • Gao, Z., Fang, H., Bai, J., Jia, J., Lu, Q., Wang, J., & Chen, B. (2016). Spatial and seasonal distributions of soil phosphorus in a short-term flooding wetland of the Yellow River Estuary, China. Ecological Informatics, 31, 83–90. https://doi.org/10.1016/j.ecoinf.2015.10.010

    Article  Google Scholar 

  • Grzebisz, W., Szczepaniak, W., Potarzycki, J., & Łukowiak, R. (2012). Sustainable management of soil potassium–a crop rotation oriented concept. In R. N. Issaka (Ed.), Soil fertility (pp. 317–330). IntechOpen.

    Google Scholar 

  • Gunkel, P., Jézéquel, K., & Fabre, B. (2002). Temporal evolution of copper distribution in soil fractions, influence of soil pH and organic carbon level on copper distribution. Environmental Technology, 23(9), 1001–1008. https://doi.org/10.1080/09593332308618346

    Article  CAS  Google Scholar 

  • Haque, I., Aduayi, E. A., & Sibanda, S. (1993). Copper in soils, plants, and ruminant animal nutrition with special reference to sub-Saharan Africa. Journal of Plant Nutrition, 16(11), 2149–2212. https://doi.org/10.1080/01904169309364680

    Article  CAS  Google Scholar 

  • Hayes, R. C., Conyers, M. K., Li, G. D., Poile, G. J., Price, A., McVittie, B. J., Gardner, M. J., Sandral, G. A., & McCormick, J. I. (2012). Spatial and temporal variation in soil Mn2+ concentrations and the impact of manganese toxicity on lucerne and subterranean clover seedlings. Crop and Pasture Science, 63(9), 875–885. https://doi.org/10.1071/CP12138

    Article  CAS  Google Scholar 

  • Haygarth, P. M., Bardgett, R. D., & Condron, L. M. (2013). Nitrogen and phosphorus cycles and their management. In P. J. Gregory & S. Nortcliff (Eds.), Soil conditions and plant growth (pp. 132–159). Blackwell Publishing.

    Chapter  Google Scholar 

  • He, Z. L., Shentu, J., & Yang, X. E. (2010). Manganese and selenium. In P. S. Hooda (Ed.), Trace elements in soils (pp. 481–495). Blackwell Publishing.

    Chapter  Google Scholar 

  • Irmak, S., Surucu, A. K., & Aydin, S. (2008). Zinc contents of soils and plants in the Cukurova region of Turkey. Asian Journal of Chemistry, 20(5), 3525–3536.

    CAS  Google Scholar 

  • Jobbagy, E. G., & Jackson, R. B. (2001). The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry, 53(1), 51–77. https://doi.org/10.1023/A:1010760720215

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x

    Article  CAS  Google Scholar 

  • Makino, T., Hasegawa, S., Sakurai, Y., Ohno, S., Utagawa, H., Maejima, Y., & Momohara, K. (2000). Influence of soil-drying under field conditions on exchangeable manganese, cobalt, and copper contents. Soil Science and Plant Nutrition, 46(3), 581–590. https://doi.org/10.1080/00380768.2000.10409123

    Article  CAS  Google Scholar 

  • Millaleo, R., Reyes-Díaz, M., Ivanov, A. G., Mora, M. L., & Alberdi, M. (2010). Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition, 10(4), 470–481. https://doi.org/10.4067/S0718-95162010000200008

    Article  Google Scholar 

  • Miloš, B., & Bensa, A. (2021). The copper content in soil of olive orchards from Dalmatia, Croatia. Eurasian Soil Science, 54, 865–874. https://doi.org/10.1134/S1064229321060119

    Article  Google Scholar 

  • Moore, G. A. (2001). Soil guide: A handbook for understanding and managing agricultural soils. Department of Agriculture and Food, Western Australia, Perth.

  • Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Dept. of Agriculture.

    Google Scholar 

  • Pasquini, S. C., Wright, S. J., & Santiago, L. S. (2015). Lianas always outperform tree seedlings regardless of soil nutrients: Results from a long-term fertilization experiment. Ecology, 96(7), 1866–1876. https://doi.org/10.1890/14-1660.1

    Article  Google Scholar 

  • Perrott, K. W., Sarathchandra, S. U., & Waller, J. E. (1990). Seasonal storage and release of phosphorus and potassium by organic matter and the microbial biomass in a high producing pastoral soil. Soil Research, 28(4), 593–608. https://doi.org/10.1071/SR9900593

    Article  CAS  Google Scholar 

  • Provenzano, M. R., El Bilali, H., Simeone, V., Mondelli, D., & Baser, N. (2009). Monitoring of soil copper concentrations in different organic farms over a three-year period in Apulia, South-Eastern Italy. Italian Journal of Agronomy, 4(1), 41–52. https://doi.org/10.4081/ija.2009.1.41

    Article  Google Scholar 

  • Pulleman, M., Creamer, R., Hamer, U., Helder, J., Pelosi, C., Peres, G., & Rutgers, M. (2012). Soil biodiversity, biological indicators and soil ecosystem services—An overview of European approaches. Current Opinion in Environmental Sustainability, 4(5), 529–538. https://doi.org/10.1016/j.cosust.2012.10.009

    Article  Google Scholar 

  • Rallo, G., & Provenzano, G. (2013). Modelling eco-physiological response of table olive trees (Olea europaea L.) to soil water deficit conditions. Agricultural Water Management, 120, 79–88. https://doi.org/10.1016/j.agwat.2012.10.005

    Article  Google Scholar 

  • Schachtman, D. P., Reid, R. J., & Ayling, S. M. (1998). Phosphorus uptake by plants: From soil to cell. Plant Physiology, 116(2), 447–453. https://doi.org/10.1104/pp.116.2.447

    Article  CAS  Google Scholar 

  • Sharpley, A. N. (1989). Relationship between soil potassium forms and mineralogy. Soil Science Society of America Journal, 53, 1023–1028. https://doi.org/10.2136/sssaj1989.03615995005300040006x

    Article  Google Scholar 

  • Sparrow, L. A., & Uren, N. C. (1987). Oxidation and reduction of Mn in acidic soils: Effect of temperature and soil pH. Soil Biology and Biochemistry, 19(2), 143–148. https://doi.org/10.1016/0038-0717(87)90073-3

    Article  CAS  Google Scholar 

  • Thomas, G. W. (1983). Exchangeable cations. In A. L. Page (Ed.), Methods of soil analysis Part 2, Chemical and microbiological properties (2nd ed., pp. 159–165). Soil Science Society of America.

    Google Scholar 

  • Tubeileh, A., Turkelboom, F., Abdeen, M., Sultan-Tubeileh, K., & Alam-Eldein, S. (2017). Effect of soil and land factors on olive (Olea europaea L.) yield and oil concentration in a rainfed Mediterranean system. Acta Horticulturae, 1160, 145–149. https://doi.org/10.17660/ActaHortic.2017.1160.21

  • Van Sundert, K., Radujkovic, D., Cools, N., De Vos, B., Etzold, S., Fernandez-Martinez, M., Janssens, I. A., Merila, P., Penuelas, J., Sardans, J., Stendahl, J., Terrer, C., & Vicca, S. (2020). Towards comparable assessment of the soil nutrient status across scales-Review and development of nutrient metrics. Global Change Biology, 26, 392–409. https://doi.org/10.1111/gcb.14802

    Article  Google Scholar 

  • Vitousek, P. M., Porder, S., Houlton, B. Z., & Chadwick, O. A. (2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications, 20(1), 5–15. https://doi.org/10.1890/08-0127.1

    Article  Google Scholar 

  • Williams, A., & Hedlund, K. (2013). Indicators of soil ecosystem services in conventional and organic arable fields along a gradient of landscape heterogeneity in southern Sweden. Applied Soil Ecology, 65, 1–7. https://doi.org/10.1016/j.apsoil.2012.12.019

    Article  Google Scholar 

  • Zhao, S., He, P., Qiu, S., Jia, L., Liu, M., Jin, J., & Johnston, A. M. (2014). Long-term effects of potassium fertilization and straw return on soil potassium levels and crop yields in north-central China. Field Crops Research, 169, 116–122. https://doi.org/10.1016/j.fcr.2014.09.017

    Article  Google Scholar 

  • Zhao, Z., Liu, G., Liu, Q., Huang, C., Li, H., & Wu, C. (2018). Distribution characteristics and seasonal variation of soil nutrients in the Mun River Basin, Thailand. International Journal of Environmental Research and Public Health, 15(9), 1818. https://doi.org/10.3390/ijerph15091818

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the contribution of Dr. Şahin Cenkseven (Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Cukurova University, Turkey) for soil sampling, soil nutrient analyses, and statistical analyses and Oğuzhan Aydın (Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Cukurova University, Turkey) for soil nutrient analyses.

Author information

Authors and Affiliations

Authors

Contributions

Soil analyses, writing, and statistical analysis—Burak Koçak.

Corresponding author

Correspondence to Burak Koçak.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

The author has contributed to this research and have consent to publish.

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koçak, B. Seasonal variations of some soil nutrients in a natural and an agricultural olive grove in Adana, Turkey. Environ Monit Assess 194, 246 (2022). https://doi.org/10.1007/s10661-022-09903-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09903-y

Keywords

Navigation