Skip to main content

Advertisement

Log in

Distribution of soil carbon fractions under different bamboo species in northwest Himalayan foothills, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil carbon and its fractions are important in understanding the mechanism of soil carbon sequestration. The present study evaluated the impact of seven commercial bamboo species, viz., Bambusa balcooa, B. bambos, B. vulgaris, B. nutans, Dendrocalamus hamiltonii, D. stocksii, and D. strictus, on labile and non-labile carbon fractions. In the 0–15-cm layer, B. nutans had the highest very labile C (7.65 g kg−1) followed by B. vulgaris > B. balcooa > D. stocksii > D. hamiltonii > B. bambos > D. strictus > open. The active carbon pool was significantly low under the control plot (i.e. the open) indicating the positive influence of bamboo in soil C build-up in the top 0–15 cm soil layer. Amongst the different species of bamboo evaluated in this study, D. strictus accumulated the highest active C pool in 0–30-cm soil layer followed by B. vulgaris. Of the total organic C in the 0–30 cm soil depth, majority (55–60%) was contributed by the passive C pool comprising the less labile and the non-labile fraction of SOC. A high value of carbon stratification ratio (> 2) was observed for D. strictus, B. bambos, and D. hamiltonii which proves their potential for restoration of the degraded lands. The majority of bamboo species except for B. balcooa and D. stocksii showed a higher carbon management index than open systems, thereby indicating higher rates of soil C rehabilitation. Of the seven bamboo species, B. vulgaris, D. strictus, and B. nutans can be adopted for cultivation in the northwest Himalayas given their ability to positively impact the SOC and its fractions in both surface and sub-surface soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  • Benbi, D. K., Brar, K., Toor, A. S., & Singh, P. (2015). Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India. Geoderma, 237, 149–158.

    Article  Google Scholar 

  • Ben-Zhi, Z., Mao-Yi, F., Jin-Zhong, X., Xiao-Sheng, Y., & Zheng-Cai, L. (2005). Ecological functions of bamboo forest: Research and application. Journal of Forestry Research, 16(2), 143–147.

    Article  Google Scholar 

  • Blair, G. J., Lefroy, R. D., & Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46(7), 1459–1466.

    Article  Google Scholar 

  • Blair, N. (2000). Impact of cultivation and sugar-cane green trash management on carbon fractions and aggregate stability for a Chromic Luvisol in Queensland, Australia. Soil and Tillage Research, 55, 183-191.

  • Chan, K. Y., Bowman, A., & Oates, A. (2001). Oxidizible organic carbon fractions and soil quality changes in an oxicpaleustalf under different pasture leys. Soil Science, 166(1), 61–67.

    Article  CAS  Google Scholar 

  • Dwivedi, D., Tang, J., Bouskill, N., Georgiou, K., Chacon, S. S., & Riley, W. J. (2019). Abiotic and biotic controls on soil organo–mineral interactions: Developing model structures to analyze why soil organic matter persists. Reviews in Mineralogy and Geochemistry, 85(1), 329–348.

    Article  CAS  Google Scholar 

  • Franzluebbers, A. J. (2002). Soil organic matter stratification ratio as an indicator of soil quality. Soil and Tillage Research, 66(2), 95–106.

    Article  Google Scholar 

  • Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann, T., & Luderer, G. (2018). Negative emissions—part 2: Costs, potentials and side effects. Environmental Research Letters, 13(6), 063002.

  • Ghosh, P. K., Venkatesh, M. S., Hazraand, K. K., & Kumar, N. (2012). Long-term effect of pulses and nutrient management on soil organic carbon dynamics and sustainability on an Inceptisol of Indo-Gangetic plains of India. Experimental Agriculture48(4), 473–487.

    Article  Google Scholar 

  • Ghosh, S., Wilson, B. R., Mandal, B., Ghoshal, S. K., & Growns, I. (2010). Changes in soil organic carbon pool in three long-term fertility experiments with different cropping systems and inorganic and organic soil amendments in the eastern cereal belt of India. Soil Research, 48(5), 413–420.

    Article  CAS  Google Scholar 

  • Guo, L. B., & Gifford, R. M. (2002). Soil carbon stocks and land use change. Global Change Biol, 8, 345–360.

  • Houghton, R. A. (2003). Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus, 55, 378–390.

    Google Scholar 

  • Huang, Z.-T., Li, Y.-F., Jiang, P.-K., Chang, S. X., Song, Z.-L., Liu, J., & Zhou, G.-M. (2014). Long-term intensive management increased carbon occluded in phytolith(PhytOC) in bamboo forest soils. Scient. Rep., 4, 3602.

    Article  Google Scholar 

  • IFSR. (2011). https://www.fsi.nic.in/forest-report-2011

  • INBAR. (2006). The partnership for a better world—Strategy to the year 2015. Beijing, China.

  • INBAR. (2010). Bamboo and climate change mitigation: A comparative analysis of carbon sequestration, Beijing, China: International Network for bamboo and Rattan (INBAR), Technical Report No. 32, 47.

  • ISFR. (2019). http://fsi.nic.in/forest-report-2019

  • Jastrow, J. D., Amonette, J. E., & Bailey, V. L. (2007). Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change, 80, 5–23.

    Article  CAS  Google Scholar 

  • Kalambukattu, J. G., Singh, R., Patra, A. K., & Arunkumar, K. (2013). Soil carbon pools and carbon management index under different land use systems in the Central Himalayan region. Acta AgriculturaeScandinavica, Section B-Soil & Plant Science, 63(3), 200–205.

    Article  CAS  Google Scholar 

  • Kaur, T., Brar, B. S., & Dhillon, N. S. (2008). Soil organic matter dynamics as affected by long-term use of organic and inorganic fertilizers under maize-wheat cropping system. Nutrient Cycling in Agroecosystems, 81, 159–180.

    Article  Google Scholar 

  • Kaushal, R., Singh, I., Thapliyal, S. D., Gupta, A. K., Mandal, D., Tomar, J. M. S., Kumar, A., Alam, N. M., Kadam, D., Singh, D. V., Mehta, H., Dogra, P., Ojasvi, P. R., Reza, S., & DuraiJ. (2020). Rooting behaviour and soil properties in different bamboo species of Western Himalayan Foothills. India. Sci Rep, 10, 4966.

    Article  CAS  Google Scholar 

  • Kaushal, R., Subbulaksmi, V., Tomar, J. M. S., Alam, N. M., Jayaprakash, J., Mehta, H., & Chaturvedi, O. P. C. (2016). Predictive models for biomass and carbon stock estimation in male bamboo (DendrocalamusstrictusL) in Doon valley. India. Acta Ecol. Sin., 36, 469–476.

    Article  Google Scholar 

  • Kaushal, R., Tewari, S., Banik, R. L., Thapliyal, S. D., Singh, I., Reza, S., & Durai, J. (2020a). Root distribution and soil properties under 12-year old sympodial bamboo plantation in Central Himalayan Tarai Region, India. Agroforest Syst, 94, 917–932.

    Article  Google Scholar 

  • Kaushal, R., Tewari, S., Thapliyal, S. D., Kumar, A., Roy, T., Islam, S., Lepcha, S. T. S., & Durai, J. (2021). Build-up of labile, non-labile carbon fractions under fourteen-year-old bamboo plantations in the Himalayan foothills. Heliyon, 7(8), e07850.

  • Kleinhenz, V., & Midmore, D. (2001). Aspects of bamboo agronomy. Advances in Agronomy, 94, 99–144.

    Article  Google Scholar 

  • Langley, J. A., & Hungate, B. A. (2003). Mycorrhizal controls on belowground litter quality. Ecology, 84, 2302–2312.

    Article  Google Scholar 

  • Li, Z. H., & Kobayashi, M. (2004). Plantation future of bamboo in China. Journal of Forestry Research, 15(3), 233–242.

    Article  Google Scholar 

  • Lobovikov, M., Lou, Y., Schoene, D., & Widenoja, R. (2009). The poor man’s carbon sink: Bamboo in climate change and poverty alleviation. Non-Wood Forest Products Working Document, (8).

  • Mao, R., Zeng, D. H., & Li, L. J. (2011). Fresh root decomposition pattern of two contrasting tree species from temperate agroforestry systems, effects of root diameter and nitrogen enrichment of soil. Plant and Soil, 347, 115–124.

    Article  CAS  Google Scholar 

  • Nath, A. J., & Das, A. K. (2008). Bamboo resources in the homegardens of Assam: A case study from Barrack Valley. Journal of Tropical Agriculture, 46, 58–61.

    Google Scholar 

  • Nath, A. J., Das, G., & Das, A. K. (2009). Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass and Bioenergy, 33, 1188–1196.

    Article  Google Scholar 

  • Nath, A. J., Lal, R., & Das, A. K. (2015a). Ethnopedology and soil quality of bamboo (Bambusa sp.) based agroforestry system. Science of the Total Environment, 521–522, 372–379.

    Google Scholar 

  • Nath, A. J., Lal, R., & Das, A. K. (2015b). Managing woody bamboos for carbon farming and carbon trading. Global Ecology and Conservation, 3, 653–663.

    Article  Google Scholar 

  • Nath, A. J., & Das, A. K. (2011). Carbon storage and sequestration in bamboo based small holder homegardens of BarakValley. Assam. Curr. Sci., 100, 229–233.

    CAS  Google Scholar 

  • Ohrnberger, D. (1999). The bamboos of the world: Annotated nomenclature and literature of the species and the higher and lower taxa. Elsevier.

  • Parr, J., Sullivan, L., Chen, B., Ye, G., & Zheng, W. (2010). Carbon bio-sequestration within the phytoliths of economic bamboo species. Global Change Biology, 16, 2661–2667.

    Article  Google Scholar 

  • Raz-Yaseef, N., Koteen, L., & Baldocchi, D. D. (2013). Coarse root distribution of a semi-arid oak savanna estimated with ground penetrating radar. J Geophys Res (biogeosci), 118, 135–147.

    Article  Google Scholar 

  • Sahoo, U. K., Singh, S. L., Gogoi, A., Kenye, A., & Sahoo, S. S. (2019). Active and passive soil organic carbon pools as affected by different land use types in Mizoram, Northeast India. PloS one, 14(7).

  • Sainepo, B. M., Gachene, C. K., & Karuma, A. (2018). Assessment of soil organic carbon fractions and carbon management index under different land use types in Olesharo Catchment, Narok County. Kenya. Carbon Balance and Management, 13(1), 4.

    Article  Google Scholar 

  • Sanderman, J., Hengl, T., & Fiske, G. J. (2017). Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences, 114(36), 9575–9580.

    Article  CAS  Google Scholar 

  • Schnabel, R. R., Franzluebbers, A. J., Stout, W. L., Sanderson, M. A., & Stuedemann, J. A. (2001). The effects of pasture management practices. Lewis Publishers, 291–322.

    Google Scholar 

  • Smith, P. (2012). Soils and climate change. Current Opinion in Environmental Sustainability, 4, 539–544. https://doi.org/10.1016/j.cosust.2012.06.005

    Article  Google Scholar 

  • Sodhi, G. P. S., Beri, V., & Benbi, D. K. (2009). Using carbon management index to assess the impact of compost application on changes in soil carbon after ten years of rice–wheat cropping. Communications in Soil Science and Plant Analysis, 40(21–22), 3491–3502.

    Article  CAS  Google Scholar 

  • Stevenson, F. J. (Ed.). (1994). Humus chemistry: Genesis, composition, reactions (2nd ed.). John Wiley.

    Google Scholar 

  • Van Lear, D. H., Kapeluck, P. R., & Parker, M. M. (1995). Distribution of carbon in a Piedmont soil as affected by loblolly pine management. Carbon forms and functions in forest soils, 489–501.

  • Vieira, F. C. B., Bayer, C., Zanatta, J. A., Dieckow, J., Mielniczuk, J., & He, Z. L. (2007). Carbon management index based on physical fractionation of soil organic matter in an Acrisol under long-term no-till cropping systems. Soil and Tillage Research, 96(1–2), 195–204.

    Article  Google Scholar 

  • Zhang, T., Li, Y., Chang, S. X., Jiang, P., Zhou, G., Liu, J., & Lin, L. (2013). Converting paddy fields to Lei bamboo (Phyllostachys praecox) stands affected soil nutrient concentrations, labile organic carbon pools, and organic carbon chemical compositions. Plant and Soil, 367(1–2), 249–261.

    Article  CAS  Google Scholar 

  • Zhang, X., & Wang, W. (2015). The decomposition of fine and coarse roots: Their global patterns and controlling factors. Scientific Reports, 5, 9940.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the State Forest Department, Uttarakhand, India, and the International Bamboo and Rattan Organization (INBAR) with its project funded by the International Fund for Agriculture Development (IFAD) and European Union (EU). The financial help received is duly acknowledged. The authors are thankful to the ICAR and the Director of the Institute for providing the necessary facilities to conduct the work. The authors are also highly thankful to Mr. Ravish Singh and Ms. Sarita Gupta for the data collection, field and lab support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajesh Kaushal or Trisha Roy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushal, R., Roy, T., Thapliyal, S. et al. Distribution of soil carbon fractions under different bamboo species in northwest Himalayan foothills, India. Environ Monit Assess 194, 205 (2022). https://doi.org/10.1007/s10661-022-09839-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09839-3

Keywords

Navigation