Skip to main content

Advertisement

Log in

Using multiple isotopes to identify sources and transport of nitrate in urban residential stormwater runoff

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

A Correction to this article was published on 17 August 2022

This article has been updated

Abstract

Increased nitrogen (N) from urban stormwater runoff aggravates the deterioration of aquatic ecosystems as urbanisation develops. The sources and transport of nitrate (NO3) in urban stormwater runoff were investigated by analysing different forms of N, water isotopes (δD-H2O and δ18O-H2O), and NO3 isotopes (δ15N-NO3 and δ18O-NO3) in urban stormwater runoff in a residential area in Hangzhou, China. The results showed that the concentrations of total N and nitrate N in road runoff were higher than those in roof runoff. Moreover, high concentrations of dissolved organic N and particulate N led to high total nitrogen (TN) concentrations in road runoff (mean: 3.76 mg/L). The high δ18O-NO3 values (mean: + 60 ± 13.1‰) indicated that atmospheric deposition was the predominant NO3 source in roof runoff, as confirmed by the Bayesian isotope mixing model (SIAR model), contributing 84–98% to NO3. Atmospheric deposition (34–92%) and chemical fertilisers (6.2–54%) were the main NO3 sources for the road runoff. The proportional contributions from soil and organic N were small in the road runoff and roof runoff. For the initial period, the NO3 contributions from atmospheric deposition and chemical fertilisers were higher and lower, respectively, than those in the middle and late periods in road runoff during storm events 3 and 4, while an opposite trend of road runoff in storm event 7 highlighted the influence of short antecedent dry weather period. Reducing impervious areas and more effective management of fertiliser application in urban green land areas were essential to minimize the presence of N in urban aquatic ecosystems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The datasets analysed during the study are available in the Supplementary Material.

Change history

References

  • Al Mamoon, A., Jahan, S., He, X., Joergensen, N. E., & Rahman, A. (2019). First flush analysis using a rainfall simulator on a micro catchment in an arid climate. Science Of the Total Environment, 693, Article 133552. https://doi.org/10.1016/j.scitotenv.2019.07.358

  • Ballo, S., Liu, M., Hou, L. J., & Chang, J. (2009). Pollutants in stormwater runoff in Shanghai (China): Implications for management of urban runoff pollution. Progress in Natural Science-Materials International, 19(7), 873–880. https://doi.org/10.1016/j.pnsc.2008.07.021

    Article  CAS  Google Scholar 

  • Baral, D., Fisher, J. R., Florek, M. J., Dvorak, B. I., Snow, D. D., & Admiraal, D. M. (2018). Atmospheric contributions of nitrate to stormwater runoff from two urban watersheds. Journal Of Environmental Engineering, 144(2), 05017009, Article 05017009. https://doi.org/10.1061/(asce)ee.1943-7870.0001323

  • Bateman, A., & Kelly, S. (2007). Fertilizer nitrogen isotope signatures. Isotopes in Environmental and Health Studies, 43, 237–247. https://doi.org/10.1080/10256010701550732

    Article  CAS  Google Scholar 

  • Bedard-Haughn, A., van Groenigen, J. W., & van Kessel, C. (2003). Tracing 15N through landscapes: potential uses and precautions. Journal of Hydrology, 272(1), 175–190. https://doi.org/10.1016/S0022-1694(02)00263-9

  • Carey, R. O., Hochmuth, G. J., Martinez, C. J., Boyer, T. H., Dukes, M. D., Toor, G. S., & Cisar, J. L. (2013). Evaluating nutrient impacts in urban watersheds: Challenges and research opportunities. Environmental Pollution, 173, 138–149. https://doi.org/10.1016/j.envpol.2012.10.004

    Article  CAS  Google Scholar 

  • Chen, X., Jiang, L., Huang, X. L., & Cai, Z. C., (2021). Identifying nitrogen source and transport characteristics of the urban estuaries and gate-controlled rivers in northern Taihu Lake, China. Ecological Indicators, 130, Article 108035. https://doi.org/10.1016/j.ecolind.2021.108035

  • Chong, N.-M., Chen, Y.-C., & Hsieh, C.-N. (2012). Assessment of the quality of stormwater from an industrial park in central Taiwan. Environmental Monitoring and Assessment, 184(4), 1801–1811. https://doi.org/10.1007/s10661-011-2079-6

    Article  Google Scholar 

  • Chow, M. F., & Yusop, Z. (2014). Characterization and source identification of stormwater runoff in tropical urban catchments. Water Science and Technology, 69(2), 244–252. https://doi.org/10.2166/wst.2013.574

    Article  CAS  Google Scholar 

  • Craig, H. I. (1961). Isotopic variations in meteoric waters: Science. Science, 133.

  • Curt, M., Aguado, P. L., Sánchez, G., Bigeriego, M., & Fernández, J. (2004). Nitrogen isotope ratios of synthetic and organic sources of nitrate water contamination in Spain. Water Air and Soil Pollution, 151, 135–142. https://doi.org/10.1023/B:WATE.0000009889.36833.c0

    Article  CAS  Google Scholar 

  • Divers, M. T., Elliott, E. M., & Bain, D. J. (2014). Quantification of Nitrate Sources to an Urban Stream Using Dual Nitrate Isotopes. Environmental Science & Technology, 48(18), 10580–10587. https://doi.org/10.1021/es404880j

    Article  CAS  Google Scholar 

  • Dong, Y., Yang, J. L., Zhao, X. R., Yang, S. H., Jan Mulder, J., Dörsch, P., & Zhang, G. L. (2021). Nitrate runoff loss and source apportionment in a typical subtropical agricultural watershed. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-16935-3

    Article  Google Scholar 

  • Gómez-Alday, J. J., Hussein, S., Arman, H., Alshamsi, D., Murad, A., Elhaj, K., & Aldahan, A. (2022). A multi-isotopic evaluation of groundwater in a rapidly developing area and implications for water management in hyper-arid regions. Science of the Total Environment, 805, Article 150245. https://doi.org/10.1016/j.scitotenv.2021.150245

  • Gromaire-Mertz, M. C., Garnaud, S., Gonzalez, A., & Chebbo, G. (1999). Characterisation of urban runoff pollution in Paris. Water Science and Technology, 39(2), 1–8. https://doi.org/10.1016/s0273-1223(99)00002-5

    Article  CAS  Google Scholar 

  • Hale, R. L., Turnbull, L., Earl, S., Grimm, N., Riha, K., Michalski, G., Lohse, K. A., & Childers, D. (2014). Sources and Transport of Nitrogen in Arid Urban Watersheds. Environmental Science & Technology, 48(11), 6211–6219. https://doi.org/10.1021/es501039t

    Article  CAS  Google Scholar 

  • Hobbie, S. E., Finlay, J. C., Janke, B. D., Nidzgorski, D. A., Millet, D. B., & Baker, L. A. (2017). Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution (vol 114, pg 4177, 2017). Proceedings of the National Academy of Sciences of the United States of America, 114(20), E4116–E4116. https://doi.org/10.1073/pnas.1706049114

    Article  CAS  Google Scholar 

  • Hu, J., Pan, M. Y., Han, T. H., Zhuang, Z., Cao, Y. N., Yang, K. L., Li, Y. L., & Liu, W. G. (2021). Identification of nitrate sources in the Jing River using dual stable isotopes, Northwest China. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-15380-6

  • Hu, M. P., Liu, Y. M., Zhang, Y. F., Dahlgren, R. A., & Chen, D. J. (2019). Coupling stable isotopes and water chemistry to assess the role of hydrological and biogeochemical processes on riverine nitrogen sources. Water Research, 150, 418–430. https://doi.org/10.1016/j.watres.2018.11.082

    Article  CAS  Google Scholar 

  • HZSB. (2020). Hangzhou Bureau of Statistics, 2020. Hangzhou Statistical Yearbook. https://tjj.hangzhou.gov.cn/art/2020/10/29/art_1229453592_3819709.html. Accessed 29 October 2020.

  • Jani, J., Yang, Y. Y., Lusk, M. G., & Toor, G. S. (2020). Composition of nitrogen in urban residential stormwater runoff: Concentrations, loads, and source characterization of nitrate and organic nitrogen. Plos One, 15(2), e0229715, Article e0229715. https://doi.org/10.1371/journal.pone.0229715

  • Janke, B. D., Finlay, J. C., & Hobbie, S. E. (2017). Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution. Environmental Science & Technology, 51(17), 9569–9579. https://doi.org/10.1021/acs.est.7b02225

    Article  CAS  Google Scholar 

  • Jin, Z. F., Hu, J., Wu, A. J., Li, G. Y., Zhang, W. L., & Li, F. L. (2021a). Identify the Nitrate Sources in Different Land Use Areas Based on Multiple Isotopes. Environmental Science, 42(4), 1696–1705. (In Chinese).

  • Jin, Z. F., Qian, L. J., Shi, Y. S., Fu, G. W., Li, G. Y., & Li, F. L. (2021b). Quantifying major NOx sources of aerosol nitrate in Hangzhou, China, by using stable isotopes and a Bayesian isotope mixing model. Atmospheric Environment, 244, 117979, Article 117979. https://doi.org/10.1016/j.atmosenv.2020.117979

  • Jin, Z. F., Wang, Y., Qian, L. J., Hu, Y. M., Jin, X. P., Hong, C. C., & Li, F. L. (2019). Combining chemical components with stable isotopes to determine nitrate sources of precipitation in Hangzhou and Huzhou, SE China. Atmospheric Pollution Research, 10(2), 386–394. https://doi.org/10.1016/j.apr.2018.09.004

  • Kaiser, J., Hastings, M. G., Houlton, B. Z., Rockmann, T., & Sigman, D. M. (2007). Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O. Analytical Chemistry, 79(2), 599–607. https://doi.org/10.1021/ac061022s

    Article  CAS  Google Scholar 

  • Kaushal, S. S., Mayer, P. M., Vidon, P. G., Smith, R. M., Pennino, M. J., Newcomer, T. A., Duan, S. W., Welty, C., & Belt, K. T. (2014). Land use and climate variability amplify carbon, nutrient, and contaminant pulses: A review with management implications. Journal of the American Water Resources Association, 50(3), 585–614. https://doi.org/10.1111/jawr.12204

    Article  CAS  Google Scholar 

  • Kendall, C., Elliott, E., & Wankel, S. (2007). Tracing Anthropogenic Inputs of Nitrogen to Ecosystems. In (pp. 375–449). https://doi.org/10.1002/9780470691854.ch12

  • Kim, L. H., Ko, S. O., Jeong, S., & Yoon, J. (2007). Characteristics of washed-off pollutants and dynamic EMCs in parking lots and bridges during a storm. Science of the Total Environment, 376(1–3), 178–184. https://doi.org/10.1016/j.scitotenv.2006.12.053

    Article  CAS  Google Scholar 

  • Kojima, K., Murakami, M., Yoshimizu, C., Tayasu, I., Nagata, T., & Furumai, H. (2011). Evaluation of surface runoff and road dust as sources of nitrogen using nitrate isotopic composition. Chemosphere, 84(11), 1716–1722. https://doi.org/10.1016/j.chemosphere.2011.04.071

    Article  CAS  Google Scholar 

  • Krimsky, L. S., Lusk, M. G., Abeels, H., & Seals, L. (2021). Sources and concentrations of nutrients in surface runoff from waterfront homes with different landscape practices. Science Of the Total Environment, 750, 142320, Article 142320. https://doi.org/10.1016/j.scitotenv.2020.142320

  • Lee, J. H., Bang, K. W., Ketchum, L. H., Choe, J. S., & Yu, M. J. (2002). First flush analysis of urban storm runoff. Science Of the Total Environment, 293(1–3), 163–175, Article Pii s0048–9697(02)00006–2. https://doi.org/10.1016/s0048-9697(02)00006-2

  • Lewis, D. B., & Grimm, N. B. (2007). Hierarchical regulation of nitrogen export from urban catchments: Interactions of storms and landscapes. Ecological Applications, 17(8), 2347–2364. https://doi.org/10.1890/06-0031.1

    Article  Google Scholar 

  • Li, D. Y., Wan, J. Q., Ma, Y. W., Wang, Y., Huang, M. Z., & Chen, Y. M. (2015). Stormwater Runoff Pollutant Loading Distributions and Their Correlation with Rainfall and Catchment Characteristics in a Rapidly Industrialized City. Plos One, 10(3), e0118776, Article e0118776. https://doi.org/10.1371/journal.pone.0118776

  • Li, L. Q., Yin, C. Q., He, Q. C., & Kong, L. L. (2007a). First flush of storm runoff pollution from an urban catchment in China. Journal of Environmental Sciences, 19(3), 295–299. https://doi.org/10.1016/s1001-0742(07)60048-5

  • Li, M. T., Chen, J., Finlayson, B., Chen, Z. Y., Webber, M., Barnett, J., & Wang, M. (2019a). Freshwater Supply to Metropolitan Shanghai: Issues of Quality from Source to Consumers. Water, 11(10), 2176, Article 2176. https://doi.org/10.3390/w11102176

  • Li, Q., Yu, Y., Jiang, X. Q., & Guan, Y. T. (2019b). Multifactor-based environmental risk assessment for sustainable land-use planning in Shenzhen, China. Science of the Total Environment, 657, 1051–1063. https://doi.org/10.1016/j.scitotenv.2018.12.118

  • Li, X., Masuda, H., Koba, K., & Zeng, H. (2007b). Nitrogen Isotope Study on Nitrate-Contaminated Groundwater in the Sichuan Basin, China. Water, Air, and Soil Pollution, 178, 145–156. https://doi.org/10.1007/s11270-006-9186-y

  • Liu, M., Seyf-Laye, A.-S.M., Ibrahim, T., Gbandi, D.-B., & Chen, H. (2014). Tracking sources of groundwater nitrate contamination using nitrogen and oxygen stable isotopes at Beijing area, China. Environmental Earth Sciences, 72(3), 707–715. https://doi.org/10.1007/s12665-013-2994-7

  • Liu, S. S., Wu, F. C., Feng, W. Y., Guo, W. J., Song, F. H., Wang, H., Wang, Y., He, Z. Q., Giesy, J. P., Zhu, P., & Tang, Z. (2018). Using dual isotopes and a Bayesian isotope mixing model to evaluate sources of nitrate of Tai Lake, China. Environmental Science and Pollution Research, 25, 32631–32639. https://doi.org/10.1007/s11356-018-3242-1

  • Liu, X. L., Han, G. L., Zeng, J., Liu, M., Li, X. Q., & Boeckx, P. (2021). Identifying the sources of nitrate contamination using a combined dual isotope, chemical and Bayesian model approach in a tropical agricultural river: Case study in the Mun River, Thailand. Science Of the Total Environment, 760, 143938, Article 143938. https://doi.org/10.1016/j.scitotenv.2020.143938

  • Lusk, M. G., & Toor, G. S. (2016). Biodegradability and Molecular Composition of Dissolved Organic Nitrogen in Urban Stormwater Runoff and Outflow Water from a Stormwater Retention Pond. Environmental Science & Technology, 50(7), 3391–3398. https://doi.org/10.1021/acs.est.5b05714

    Article  CAS  Google Scholar 

  • Ma, G., Wang, Y., Bao, X., Hu, Y., Liu, Y., He, L., Wang, T., & Meng, F. (2015). Nitrogen pollution characteristics and source analysis using the stable isotope tracing method in Ashi River, northeast China. Environmental Earth Sciences, 73(8), 4831–4839. https://doi.org/10.1007/s12665-014-3786-4

    Article  CAS  Google Scholar 

  • Margalef-Marti, R., Llovet, A., Carrey, R., Ribas, A., Domene, X., Mattana, S., Chin-Pampillo, J., Mondini, C., Alcaniz, J.M., Soler, A., & Otero N., (2021). Impact of fertilization with pig slurry on the isotopic composition of nitrate retained in soil and leached to groundwater in agricultural areas. Applied Geochemistry, 125, Article 104832. https://doi.org/10.1016/j.apgeochem.2020.104832

  • McIlvin, M. R., & Casciotti, K. L. (2011). Technical Updates to the Bacterial Method for Nitrate Isotopic Analyses. Analytical Chemistry, 83(5), 1850–1856. https://doi.org/10.1021/ac1028984

    Article  CAS  Google Scholar 

  • Ministry of Ecology and Environment of the PRC. (1990). Water quality–Determination of suspended substance–Gravimetric method (GB11901-1989). The People’s Republic of China National Standards. (in Chinese).

  • Ministry of Ecology and Environment of the PRC. (2007). Water quality–Determination of the chemical oxygen demand–Fast digestion-spectrophotometric method (HJ/T399-2007). The People’s Republic of China National Standards on environmental prote. (in Chinese).

  • Ministry of Ecology and Environment of the PRC. (2012). Water quality-Determination of total nitrogen-Alkaline potassium persulfate digestion UV spectrophotometric method (HJ636-2012). The People’s Republic of China National Standards on environmental prote. (in Chinese).

  • Muller, A., Osterlund, H., Marsalek, J., & Viklander, M. (2020). The pollution conveyed by urban runoff: A review of sources. Science Of the Total Environment, 709, 136125, Article 136125. https://doi.org/10.1016/j.scitotenv.2019.136125

  • Myers, C., Athayde, D., & riscoll, E. D. (1982). EPA's Nationwide Urban Runoff Program Designed to Produce Useful Results. Civil Engineering—asce, 52(2), 54–55.

  • National Meteorological Centre (NMC), (2019). Super Typhoon Lekima. (In Chinese). http://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xzytq/201908/t20190814_533010.html

  • Parnell, A. C., Inger, R., Bearhop, S., & Jackson, A. L. (2010). Source Partitioning Using Stable Isotopes: Coping with Too Much Variation. Plos One, 5(3), e9672, Article e9672. https://doi.org/10.1371/journal.pone.0009672

  • Pastén-Zapata, E., Ledesma-Ruiz, R., Harter, T., Ramírez, A. I., & Mahlknecht, J. (2014). Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Science of the Total Environment, 470–471, 855–864. https://doi.org/10.1016/j.scitotenv.2013.10.043

    Article  CAS  Google Scholar 

  • Peng, T.-R., Lin, H.-J., Wang, C.-H., Liu, T.-S., & Kao, S.-J. (2012). Pollution and variation of stream nitrate in a protected high-mountain watershed of Central Taiwan: Evidence from nitrate concentration and nitrogen and oxygen isotope compositions. Environmental Monitoring and Assessment, 184(8), 4985–4998. https://doi.org/10.1007/s10661-011-2314-1

    Article  CAS  Google Scholar 

  • Rahal, O., Gouaidia, L., Fidelibus, M. D., Marchina, C., Natali, C., & Bianchini, G. (2021). Hydrogeological and geochemical characterization of groundwater in the F’Kirina plain (eastern Algeria). Applied Geochemistry, 130, Article 104983. https://doi.org/10.1016/j.apgeochem.2021.104983

  • Riha, K. M., Michalski, G., Gallo, E. L., Lohse, K. A., Brooks, P. D., & Meixner, T. (2014). High Atmospheric Nitrate Inputs and Nitrogen Turnover in Semi-arid Urban Catchments. Ecosystems, 17(8), 1309–1325. https://doi.org/10.1007/s10021-014-9797-x

    Article  CAS  Google Scholar 

  • Silva, C. D., & da Silva, G. B. L. (2020). Cumulative effect of the disconnection of impervious areas within residential lots on runoff generation and temporal patterns in a small urban area. Journal Of Environmental Management, 253, 109719, Article 109719. https://doi.org/10.1016/j.jenvman.2019.109719

  • Silva, T. F. G., Vincon-Leite, B., Lemaire, B. J., Petrucci, G., Giani, A., Figueredo, C. C., & Nascimento, N. D. (2019). Impact of Urban Stormwater Runoff on Cyanobacteria Dynamics in A Tropical Urban Lake. Water, 11(5), 946, Article 946. https://doi.org/10.3390/w11050946

  • Song, Y. L., Du, X. Q., & Ye, X. Y. (2019). Analysis of Potential Risks Associated with Urban Stormwater Quality for Managed Aquifer Recharge. International Journal Of Environmental Research And Public Health, 16(17), 3121, Article 3121. https://doi.org/10.3390/ijerph16173121

  • Sui, Y. Y., Ou, Y., Yan, B. X., Rousseau, A. N., Fang, Y. T., Geng, R. Z., Wang, L. X., & Ye, N. (2020). A dual isotopic framework for identifying nitrate sources in surface runoff in a small agricultural watershed, northeast China. Journal of Cleaner Production, 246, 119074, Article 119074. https://doi.org/10.1016/j.jclepro.2019.119074

  • Taebi, A., & Droste, R. L. (2004). First flush pollution load of urban stormwater runoff. Journal of Environmental Engineering and Science, 3(4), 301–309. https://doi.org/10.1139/s04-018

    Article  CAS  Google Scholar 

  • Taylor, G. D., Fletcher, T. D., Wong, T. H. F., Breen, P. F., & Duncan, H. P. (2005). Nitrogen composition in urban runoff - implications for stormwater management. Water Research, 39(10), 1982–1989. https://doi.org/10.1016/j.watres.2005.03.022

    Article  CAS  Google Scholar 

  • Teaching Material Office of the Ministry of Labor and Social Security. (2005). Garden green space maintenance. China Labor and Social Security Publisher.

  • Toor, G. S., Occhipinti, M. L., Yang, Y. Y., Majcherek, T., Haver, D., & Oki, L. (2017). Managing urban runoff in residential neighborhoods: Nitrogen and phosphorus in lawn irrigation driven runoff. Plos One, 12(6), e0179151, Article e0179151. https://doi.org/10.1371/journal.pone.0179151

  • Vaze, J., & Chiew, F. H. S. (2004). Nutrient loads associated with different sediment sizes in urban stormwater and surface pollutants. Journal of Environmental Engineering-Asce, 130(4), 391–396. https://doi.org/10.1061/(asce)0733-9372(2004)130:4(391)

    Article  CAS  Google Scholar 

  • Wang, S., Feng, X. J., Wang, Y. D., Zheng, Z. C., Li, T. X., He, S. Q., Zhang, X. Z., Yu, H. Y., Huang, H. G., Liu, T., Memon, S. U. R., & Lin, C. W. (2019). Characteristics of nitrogen loss in sloping farmland with purple soil in southwestern China during maize (Zea mays L.) growth stages. Catena, 182, 104169, Article Unsp 104169. https://doi.org/10.1016/j.catena.2019.104169

  • Weitzman, J. N., Brooks, J. R., Mayer, P. M., Rugh, W. D., & Compton, J. E. (2021). Coupling the dual isotopes of water (delta H-2 and delta O-18) and nitrate (delta N-15 and delta O-18): a new framework for classifying current and legacy groundwater pollution. Environmental Research Letters, 16(4), Article 045008. https://doi.org/10.1088/1748-9326/abdcef

  • Wen, H. Z., Xiao, Y., Wang, X. R., & Chu, L. H. (2019). Land-Transfer Events' Effects on the Housing Market: Empirical Evidence from Hangzhou, China. Journal Of Urban Planning And Development, 145(2), 04019003, Article 04019003. https://doi.org/10.1061/(asce)up.1943-5444.0000505

  • Widory, D., Kloppmann, W., Chéry, L., Bonnin, J., Rochdi, H., & Guinamant, J.-L. (2004). Nitrate in Groundwater: An Isotopic Multi-Tracer Approach. Journal of Contaminant Hydrology, 72, 165–188. https://doi.org/10.1016/j.jconhyd.2003.10.010

    Article  CAS  Google Scholar 

  • Xue, D., Botte, J., De Baets, B., Accoe, F., & Oertel née Nestler, A., Taylor, P., Cleemput, O., Berglund, M., & Boeckx, P. (2009). Present Limitations and Future Prospects of Stable Isotope Methods for Nitrate Source Identification in Surface and Groundwater. Water Research, 43, 1159–1170. https://doi.org/10.1016/j.watres.2008.12.048

    Article  CAS  Google Scholar 

  • Yan, R. H., Li, L. L., & Gao, J. F. (2019). Framework for quantifying rural NPS pollution of a humid lowland catchment in Taihu Basin, Eastern China. Science of the Total Environment, 688, 983–993. https://doi.org/10.1016/j.scitotenv.2019.06.114

    Article  CAS  Google Scholar 

  • Yang, H., Zhao, Y., Wang, J. H., Xiao, W. H., Jarsjo, J., Huang, Y., Liu, Y., Wu, J. P., & Wang, H. J. (2020). Urban closed lakes: Nutrient sources, assimilative capacity and pollutant reduction under different precipitation frequencies. Science Of the Total Environment, 700, 134531, Article Unsp 134531. https://doi.org/10.1016/j.scitotenv.2019.134531

  • Yang, Y.-Y., & Toor, G. (2017). Sources and mechanisms of nitrate and orthophosphate transport in urban stormwater runoff from residential catchments. Water Research, 112, 176–184. https://doi.org/10.1016/j.watres.2017.01.039

    Article  CAS  Google Scholar 

  • Yang, Y. Y., & Lusk, M. G. (2018). Nutrients in urban stormwater runoff: Current state of the science and potential mitigation options. Current Pollution Reports, 4(2), 112–127. https://doi.org/10.1007/s40726-018-0087-7

    Article  Google Scholar 

  • Yang, Y. Y., & Toor, G. S. (2016). δ15N and δ18O reveal the sources of nitrate-nitrogen in urban residential stormwater runoff. Environmental Science & Technology, 50(6), 2881–2889. https://doi.org/10.1021/acs.est.5b05353

    Article  CAS  Google Scholar 

  • Yu, L., Zheng, T. Y., Zheng, X. L., Hao, Y. J., & Yuan, R. Y. (2020). Nitrate source apportionment in groundwater using Bayesian isotope mixing model based on nitrogen isotope fractionation. Science of the Total Environment, 718, Article 137242. https://doi.org/10.1016/j.scitotenv.2020.137242

  • Yuan, J., Zhao, B., & Zhang, Q. (2019). Transformation and source identification of N in the upper reaches of the Han River basin, China: evaluated by a stable isotope approach. Environmental Monitoring and Assessment, 191(7), Article 475. https://doi.org/10.1007/s10661-019-7603-0

  • Yue, F. J., Li, S. L., Waldron, S., Wang, Z. J., Oliver, D. M., Chen, X., & Liu, C. Q. (2020). Rainfall and conduit drainage combine to accelerate nitrate loss from a karst agroecosystem: Insights from stable isotope tracing and high-frequency nitrate sensing. Water Research, 186, 116388, Article 116388. https://doi.org/10.1016/j.watres.2020.116388

  • Zhang, H., Kang, X., Wang, X., Zhang, J., & Chen, G. (2019). Quantitative identification of nitrate sources in the surface runoff of three dominant forest types in subtropical China based on Bayesian model. Science of the Total Environment, 703, 135074. https://doi.org/10.1016/j.scitotenv.2019.135074

    Article  CAS  Google Scholar 

  • Zhi, X. S., Chen, L., & Shen, Z. Y. (2018). Impacts of urbanization on regional nonpoint source pollution: Case study for Beijing, China. Environmental Science and Pollution Research, 25(10), 9849–9860. https://doi.org/10.1007/s11356-017-1153-1.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 41673097; No. 41977150; No. 41373122).

Funding

This study was supported by the National Natural Science Foundation of China (No. 41673097; No. 41977150; No. 41373122).

Author information

Authors and Affiliations

Authors

Contributions

Qiyue Hu contributed to methodology, software, validation, formal analysis, investigation, data curation, writing—original draft, writing—review and editing, and visualization. Song Zhu contributed to investigation, software, and resources. Zanfang Jin contributed to conceptualization, methodology, software, validation, investigation, resources, data curation, writing—review and editing, supervision, project administration, and funding acquisition. Aijing Wu contributed to investigation, data curation, and visualization. Xiaoyu Chen contributed to investigation. Feili Li contributed to resources.

Corresponding author

Correspondence to Zanfang Jin.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• High levels of DON, PN, and NO3 caused more TN in urban road runoff.

• Atmospheric deposition was the predominant NO3 source in urban roof runoff.

• Atmospheric deposition was 34–92%, and fertilisers were 6.2–53% for NO3 in urban road runoff.

• Soil and organic N had little contribution to NO3 both in roof and road runoff. NO3 from fertilisers was derived from green land in urban residential area.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 755 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Zhu, S., Jin, Z. et al. Using multiple isotopes to identify sources and transport of nitrate in urban residential stormwater runoff. Environ Monit Assess 194, 238 (2022). https://doi.org/10.1007/s10661-022-09763-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09763-6

Keywords

Navigation