Skip to main content

Advertisement

Log in

Characterizing the post-monsoon CO2, CH4, N2O, and H2O vapor fluxes from a tropical wetland in the Himalayan foothill

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Wetlands are emitters of greenhouse gases. However, many of the wetlands remain understudied (like temperate, boreal, and high-altitude wetlands), which constrains the global budgets. Himalayan foothill is one such data-deficient area. The present study reported (for the first time) the greenhouse gas fluxes (CO2, CH4, N2O, and H2O vapor) from the soils of the Nakraunda wetland of Uttarakhand in India during the post-monsoon season (October 2020 to January 2021). The sampling points covered six different types of soil within the wetlands. CO2, CH4, N2O, and H2O vapor emissions ranged from 82.89 to 1052.13 mg m−2 h−1, 0.56 to 2.25 mg m−2 h−1, 0.18 to 0.40 mg m−2 h−1, and 557.96 to 29,397.18 mg m−2 h−1, respectively, during the study period. Except for CO2, the other three greenhouse gas effluxes did not show any spatial variability. Soils close to “swamp proper” emitted substantially higher CO2 than the vegetated soils. Soil temperature exhibited exponential relationships with all the greenhouse gas fluxes, except for H2O vapor. The Q10 values for CO2, CH4, and N2O varied from 3.42 to 4.90, 1.66 to 2.20, and 1.20 to 1.30, respectively. Soil moisture showed positive relationships with all the greenhouse gas fluxes, except for N2O. The fluxes observed from Nakraunda were in parity with global observations. However, this study showed that wetlands experiencing lower temperature regime are also capable of emitting a substantial amount of greenhouse gases and thus, requires more study. Considering the seasonality of greenhouse gas fluxes should improve global wetland emission budgets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The dataset generated and analyzed during the current study is available from the corresponding author upon reasonable request.

References

  • Abdalla, M., Smith, P., & Williams, M. (2011). Emissions of nitrous oxide from agriculture: Responses to management and climate change. In Understanding Greenhouse Gas Emissions from Agricultural Management. Washington, DC: American Chemical Society. 343–370. https://doi.org/10.1021/bk-2011-1072.ch018

  • Adviento-Borbe, M. A. A., Doran, J. W., Drijber, R. A., & Dobermann, A. (2006). Soil electrical conductivity and water content affect nitrous oxide and carbon dioxide emissions in intensively managed soils. Journal of Environmental Quality, 35(6), 1999–2010. https://doi.org/10.2134/jeq2006.0109

    Article  CAS  Google Scholar 

  • Ariani, M., Pramono, A., Purnariyanto, F., & Haryono, E. (2020). Soil chemical properties affecting GHG emission from paddy rice field due to water regime and organic matter amendment. In IOP Conference Series: Earth and Environmental Science423(1), 012066. IOP Publishing. https://doi.org/10.1088/1755-1315/423/1/012066

  • Baldock, J. A., Wheeler, I., McKenzie, N., & McBrateny, A. (2012). Soils and climate change: Potential impacts on carbon stocks and greenhouse gas emissions, and future research for Australian agriculture. Crop and Pasture Science, 63(3), 269–283. https://doi.org/10.1071/CP11170

    Article  CAS  Google Scholar 

  • Bansal, S., Chakraborty, M., Katyal, D., & Garg, J. K. (2015). Methane flux from a subtropical reservoir located in the floodplains of river Yamuna, India. Applied Ecology and Environmental Research, 13(2), 597–613.

    Google Scholar 

  • Barnard, R., Leadley, P. W., & Hungate, B. A. (2005). Global change, nitrification, and denitrification: A review. Global Biogeochemical Cycles, 19(1). https://doi.org/10.1029/2004GB002282

  • Boone, R. D., Nadelhoffer, K. J., Canary, J. D., & Kaye, J. P. (1998). Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396(6711), 570–572. https://doi.org/10.1038/25119

    Article  CAS  Google Scholar 

  • Bouma, T. J., Nielsen, K. L., Eissenstat, D. M., & Lynch, J. P. (1997). Estimating respiration of roots in soil: Interactions with soil CO2, soil temperature and soil water content. Plant and Soil, 195(2), 221–232. https://doi.org/10.1023/A:1004278421334

    Article  CAS  Google Scholar 

  • Bouwman, A. F. (1990). Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In A. F. Bouwman (Ed.), Soils and the Greenhouse Effect. John Wiley and Sons. 61–127

    Google Scholar 

  • Bower, C. A., & Wilcox, L. V. (1965). Methods of soil analysis. American Society of Agronomy. Inc.

    Google Scholar 

  • Bremner, J. M. (1997). Sources of nitrous oxide in soils. Nutrient Cycling in Agroecosystems, 49(1), 7–16. https://doi.org/10.1023/A:1009798022569

    Article  CAS  Google Scholar 

  • Bridgham, S. D., & Richardson, C. J. (1992). Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biology and Biochemistry, 24(11), 1089–1099. https://doi.org/10.1016/0038-0717(92)90058-6

    Article  CAS  Google Scholar 

  • Butterbach-Bahl, K., & Dannenmann, M. (2011). Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Current Opinion in Environmental Sustainability, 3(5), 389–395.https://doi.org/10.1016/j.cosust.2011.08.004

  • Cameron, C., Hutley, L. B., Munksgaard, N. C., Phan, S., Aung, T., Thinn, T., & Lovelock, C. E. (2021). Impact of an extreme monsoon on CO2 and CH4 fluxes from mangrove soils of the Ayeyarwady Delta, Myanmar. Science of the Total Environment, 760, 143422. https://doi.org/10.1016/j.scitotenv.2020.143422

    Article  CAS  Google Scholar 

  • Chakraborty, J. S., Singh, S., Singh, N., Jeeva, V. (2021). Methane and carbon dioxide flux heterogeneity mediated by termite mounds in moist tropical forest soils of Himalayan foothills India. Ecosystems, 1–16. https://doi.org/10.1007/s10021-021-00630-y

  • Chanda, A., Akhand, A., Dutta, S., & Hazra, S. (2011). Summer fluxes of CO2 from soil, in the coastal margin of world’s largest mangrove patch of Sundarbans—First report. Journal of Basic and Applied Scientific Research, 1(11), 2137–2141.

    Google Scholar 

  • Chanda, A., Akhand, A., Manna, S., Dutta, S., Das, I., & Hazra, S. (2013). Measuring daytime CO2 fluxes from the inter-tidal mangrove soils of Indian Sundarbans. Environmental Earth Sciences, 72(2), 417–127. https://doi.org/10.1007/s12665-013-2962-2

    Article  CAS  Google Scholar 

  • Chanda, A., Das, S., Bhattacharyya, S., Das, I., Giri, S., Mukhopadhyay, A., Samanta, S., Dutta, D., Akhand, A., Choudhury, S. B., & Hazra, S. (2019). CO2 fluxes from aquaculture ponds of a tropical wetland: Potential of multiple lime treatment in reduction of CO2 emission. Science of the Total Environment, 655, 1321–1333. https://doi.org/10.1016/j.scitotenv.2018.11.332

    Article  CAS  Google Scholar 

  • Cubasch, Wuebbles, U. D., Chen, D., Facchini, M. C., Frame, D., Mahowald, N., & Winther, J. G. (2013). Introduction. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  • Cuhel, J., Simek, M., Laughlin, R. J., Bru, D., Chèneby, D., Watson, C. J., & Philippot, L. (2010). Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity. Applied and Environmental Microbiology, 76, 1870–1878. https://doi.org/10.1128/AEM.02484-09

    Article  CAS  Google Scholar 

  • Dabrowska-Zielinska, K., Musial, J., Malinska, A., Budzynska, M., Gurdak, R., Kiryla, W., Bartold, M., & Grzybowski, P. (2018). Soil moisture in the Biebrza wetlands retrieved from Sentinel-1 imagery. Remote Sensing, 10(12), 1979. https://doi.org/10.3390/rs10121979

    Article  Google Scholar 

  • Dalal, R. C., & Allen, D. E. (2008). Greenhouse gas fluxes from natural ecosystems, Turner review no. 18. Australian Journal of Botany, 56, 369–407. https://doi.org/10.1071/BT07128

    Article  CAS  Google Scholar 

  • Dar, J. A., Ganie, K. A., & Sundarapandian, S. (2015). Soil CO2 efflux among four coniferous forest types of Kashmir Himalaya, India. Environmental Monitoring and Assessment, 187(11), 1–13.

    Google Scholar 

  • Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V., & Veldkamp, E. (2000). Testing a conceptual model of soil emissions of nitrous and nitric oxides. BioScience, 50(8), 667–680. https://doi.org/10.1641/0006-3568(2000)050[0667:TACMOS]2.0.CO;2

    Article  Google Scholar 

  • Drewitt, G. B., Black, T. A., Nesic, Z., Humphreys, E. R., Jork, E. M., Swanson, R., Ethier, G. J., Griffis, T., & Morgenstern, K. (2002). Measuring forest floor CO2 fluxes in a Douglas-fir forest. Agricultural and Forest Meteorology, 110(4), 299–317. https://doi.org/10.1016/S0168-1923(01)00294-5

    Article  Google Scholar 

  • Epron, D., Farque, L., Lucot, E., & Badot, P. M. (1999). Soil CO2 efflux in a beech forest: The contribution of root respiration. Annals of Forest Science, 56(4), 289–295. https://doi.org/10.1051/forest:19990403

    Article  Google Scholar 

  • Erwin, K. L. (2009). Wetlands and global climate change: The role of wetland restoration in a changing world. Wetland Ecology and Management, 17, 71. https://doi.org/10.1007/s11273-008-9119-1

    Article  Google Scholar 

  • Farquharson, R., & Baldock, J. (2008). Concepts in modelling N2O emissions from land use. Plant and Soil, 309(1–2), 147–167. https://doi.org/10.1007/s11104-007-9485-0

    Article  CAS  Google Scholar 

  • Flury, S., McGinnis, D. F., & Gessner, M. O. (2010). Methane emissions from a freshwater marsh in response to experimentally simulated global warming and nitrogen enrichment. Journal of Geophysical Research: Biogeosciences, 115(G1). https://doi.org/10.1029/2009JG001079

  • Frank, A. B. (2002). Carbon dioxide fluxes over a grazed prairie and seeded pasture in the northern Great Plains. Environmental Pollution, 116(3), 397–403. https://doi.org/10.1016/S0269-7491(01)00216-0

    Article  CAS  Google Scholar 

  • Gao, J., Ouyang, H., Lei, G., Xu, X., & Zhang, M. (2011). Effects of temperature, soil moisture, soil type and their interactions on soil carbon mineralization in Zoigê alpine wetland, Qinghai-Tibet Plateau. Chinese Geographical Science, 21(1), 27–35. https://doi.org/10.1007/s11769-011-0439-3

    Article  Google Scholar 

  • Graham, C. H., Elith, J., Hijmans, R. J., Guisan, A., Townsend Peterson, A., Loiselle, B. A., & NCEAS Predicting Species Distributions Working Group. (2008). The influence of spatial errors in species occurrence data used in distribution models. Journal of Applied Ecology, 45(1), 239–247. https://doi.org/10.1111/j.1365-2664.2007.01408.x

    Article  Google Scholar 

  • Gulledge, J., & Schimel, J. P. (1998). Moisture control over atmospheric CH4 consumption and CO2 production in diverse Alaskan soils. Soil Biology and Biochemistry, 30(8), 1127–1132. https://doi.org/10.1016/S0038-0717(97)00209-5

    Article  CAS  Google Scholar 

  • Hao, Y. B., Cui, X. Y., Wang, Y. F., Mei, X. R., Kang, X. M., Wu, N., Luo, P., & Zhu, D. (2011). Predominance of precipitation and temperature controls on ecosystem CO2 exchange in Zoige alpine wetlands of Southwest China. Wetland, 31(2), 413–422. https://doi.org/10.1007/s13157-011-0151-1

    Article  Google Scholar 

  • He, G., Li, K., Liu, X., Gong, Y., & Hu, Y. (2014). Fluxes of methane, carbon dioxide and nitrous oxide in an alpine wetland and an alpine grassland of the Tianshan Mountains, China. Journal of Arid Land, 6(6), 717–724. https://doi.org/10.1007/s40333-014-0070-0

    Article  Google Scholar 

  • Hirota, M., Zhang, P. C., Gu, S., Shen, H., Kuriyama, T., Li, Y., & Tang, Y. (2010). Small-scale variation in ecosystem CO2 fluxes in an alpine meadow depends on plant biomass and species richness. Journal of Plant Research, 123(4), 531–541. https://doi.org/10.1007/s10265-010-0315-8

    Article  CAS  Google Scholar 

  • https://www.esrl.noaa.gov (Current data on CO2, CH4, and N2O retrieved on 07/07/2021).

  • Huang, W., & Hall, S. J. (2017). Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter. Nature Communications, 8(1), 1774. https://doi.org/10.1038/s41467-017-01998-z

    Article  CAS  Google Scholar 

  • I.P.C.C. (1990). Climate Change. Cambridge University, Cambridge.

    Google Scholar 

  • I.P.C.C. (2003). Summary report of working group, Paris. Cost Curr. CO2 storage, 2, 14.

  • I.P.C.C. (2007). Wetland ecology—Principles and conservation, Fourth Assessment Report (AR4). Cambridge, United Kingdom, Cambridge University Press.

    Google Scholar 

  • I.P.C.C. (2013). The physical science basis. Contribution of working group I to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

  • I.P.C.C. Wetland Supplements. (2014). Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. http://www.ipcc-nggip.iges.or.jp/public/wetlands/ Accessed 15 Oct 2017.

  • Irmak, S. (2011). Dynamics of nocturnal, daytime, and sum-of-hourly evapo transpiration and other surface energy fluxes over non stressed maize canopy. Journal of Irrigation and Drainage Engineering, 137, 475–490. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000360

  • Jackson, M. L. (1967). Soil chemical analysis (p. 498). Prenice Hall Pvt. Ltd.

    Google Scholar 

  • Jauhiainen, J., Takahashi, H., Heikkinen, J. E., Martikainen, P. J., & Vasander, H. (2005). Carbon fluxes from a tropical peat swamp forest floor. Global Change Biology, 11(10), 1788–1797.https://doi.org/10.1111/j.1365-2486.2005.001031.x

  • Jiang, X., Chen, H., Peng, C., Li, Y., He, Y., Chen, D., & Liu, Y. (2016). Soil carbon dioxide fluxes from three forest types of the tropical montane rainforest on Hainan island, China. Water, Air, & Soil Pollution, 227(6), 1–14.

    Article  CAS  Google Scholar 

  • Jones, S. K., Rees, R. M., Skiba, U. M., & Ball, B. C. (2005). Greenhouse gas emissions from a managed grassland. Global and Planetary Change, 47(2–4), 201–211. https://doi.org/10.1016/j.gloplacha.2004.10.011

    Article  Google Scholar 

  • Krauss, K. W., & Whitbeck, J. L. (2012). Soil greenhouse gas fluxes during wetland forest retreat along the lower Savannah River, Georgia (USA). Wetlands, 32(1), 73–81. https://doi.org/10.1007/s13157-011-0246-8

    Article  Google Scholar 

  • Kremen, A., Bear, J., Shavit, U., & Shaviv, A. (2005). Model demonstrating the potential for coupled nitrification denitrification in soil aggregates. Environmental Science & Technology, 39(11), 4180–4188. https://doi.org/10.1021/es048304z

    Article  CAS  Google Scholar 

  • Kundu, P. (2020). Assessment of wetlands to evaluate aquatic environment: A case study in floodplain of Himalayan foothill region. SN Applied Sciences, 2(8), 1–12. https://doi.org/10.1007/s42452-020-3163-8

    Article  CAS  Google Scholar 

  • Kundu, S., Khare, D., & Mondal, A. (2017). Interrelationship of rainfall, temperature and reference evapotranspiration trends and their net response to the climate change in Central India. Theoretical and Applied Climatology, 130(3), 879–900. https://doi.org/10.1007/s00704-016-1924-5

    Article  Google Scholar 

  • Lazcano, C., Robinson, C., Hassanpour, G., & Strack, M. (2018). Short-term effects of fen peatland restoration through the moss layer transfer technique on the soil CO2 and CH4 efflux. Ecological Engineering, 125(15), 149–158. https://doi.org/10.1016/j.ecoleng.2018.10.018

    Article  Google Scholar 

  • Li, J., Liu, Y., Yang, X., & Li, J. (2006). Studies on water-vapor flux characteristic and the relationship with environmental factors over a planted coniferous forest in Qianyanzhou Station. Acta EcologicaSinica, 26(8), 2449–2456. https://doi.org/10.1016/S1872-2032(06)60040-1

    Article  Google Scholar 

  • Liu, L., Xu, M., Li, R., & Shao, R. (2017). Timescale dependence of environmental controls on methane efflux from Poyang Hu, China. Biogeosciences, 14(8), 2019–2032. https://doi.org/10.5194/bg-14-2019-2017

    Article  CAS  Google Scholar 

  • Liu, X. J., Mosier, A. R., Halvorson, A. D., Reule, C. A., & Zhang, F. S. (2007). Dinitrogen and N2O emissions in arable soils: Effect of tillage, N source and soil moisture. Soil Biology and Biochemistry, 39(9), 2362–2370. https://doi.org/10.1016/j.soilbio.2007.04.008

    Article  CAS  Google Scholar 

  • Liu, Y., Liu, S., Miao, R., Liu, Y., Wang, D., & Zhao, C. (2019). Seasonal variations in the response of soil CO2 efflux to precipitation pulse under mild drought in a temperate oak (Quercus variabilis) forest. Agricultural and Forest Meteorology, 271, 240–250. https://doi.org/10.1016/j.agrformet.2019.03.009

    Article  Google Scholar 

  • Lloyd, J., & Taylor, J. A. (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315–323.

    Article  Google Scholar 

  • Mallick, S., & Dutta, V. (2009). Estimation of methane emission from a North-Indian subtropical wetland. Journal of Sustainable Development, 2(2), 125–131. https://doi.org/10.5539/jsd.v2n2p125

  • Mazzetto, A. M., Barneze, A. S., Feigl, B. J., van Groenigen, J. W., Oenema, O., & Cerri, C. C. (2014). Temperature and moisture affect methane and nitrous oxide emission from bovine manure patches in tropical conditions. Soil Biology & Biochemistry, 76, 242–248. https://doi.org/10.1016/j.soilbio.2014.05.026

    Article  CAS  Google Scholar 

  • Meehl, G., Stocker, T., Collins, W., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J., & Zhao, Z. C., et al. (2007). IPCC climate change. In S. Solomon (Ed.), The physical science basis (pp. 747–846). Cambridge University Press.

    Google Scholar 

  • Mikha, M. M., Riceb, C. W., & Millikenc, G. A. (2005). Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biology & Biochemistry, 37(2), 339–347. https://doi.org/10.1016/j.soilbio.2004.08.003

  • Mitchell, S. A. (2013). The status of wetlands, threats and the predicted effect of global climate change: The situation in Sab-Saharan Africa. Aquatic Sciences, 75, 95–112. https://doi.org/10.1007/s00027-012-0259-2

    Article  Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (1986). Wetlands (p. 539). Van Nostrand Reinhold.

    Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (1993). Wetlands (2nd. ed.), John Wiley, New York. 722. 

  • Mitsch, W. J., & Gosselink, J. G. (2000). Wetlands (3rd ed.), New York, Van Nostrand Reinhold. 920.

  • Mitsch, W. J., Bernal, B., & Hernandez, M. E. (2015). Ecosystem services of wetlands, 1–4.

  • Moomaw, W. R., Chmura, G. L., Davies, G. T., Finlayson, C. M., Middleton, B. A., Natali, S. M., Perry, J. E., Roulet, N., & Sutton-Grier, A. E. (2018). Wetlands in a changing climate: Science, policy and management. Wetlands, 38(2), 183–205. https://doi.org/10.1007/s13157-018-1023-8

    Article  Google Scholar 

  • Myhre, G., Shindell, D., Bréon, F. M., et al. (2013). Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis (pp. 659–740). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

    Google Scholar 

  • Nazaries, L., Tate, K. R., Ross, D. J., Singh, J., Dando, J., Saggar, S., & Singh, B. K. (2011). Response of methanotrophic communities to afforestation and reforestation in New Zealand. The ISME Journal, 5, 1832–1836. https://doi.org/10.1038/ismej.2011.62

    Article  CAS  Google Scholar 

  • Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science, 1–9. https://doi.org/10.1155/2019/5794869

  • Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., & Erasmi, S. (2016). Greenhouse gas emissions from soils—A review. Geochemistry, 76(3), 327–352. https://doi.org/10.1016/j.chemer.2016.04.002

    Article  CAS  Google Scholar 

  • Olivier, J. G., Schure, K. M., & Peters, J. A. (2017). Trends in global CO2 and total greenhouse gas emissions: 2017 report. PBL Netherlands Environmental Assessment Agency.

    Google Scholar 

  • Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.

  • Pang, J., Wang, X., Peng, C., Mu, Y., Ouyang, Z., Lu, F., Zhang, H., Zhang, S., & Liu, W. (2019). Nitrous oxide emissions from soils under traditional cropland and apple orchard in the semi-arid loess plateau of China. Agriculture, Ecosystems & Environment, 269, 116–124. https://doi.org/10.1016/j.agee.2018.09.028

    Article  CAS  Google Scholar 

  • Parn, J., Verhoeven, J. T., Butterbach-Bahl, K., Dise, N. B., Ullah, S., Aasa, A., & Mander, U. (2018). Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nature Communications, 9(1), 1–8. https://doi.org/10.1038/s41467-018-03540-1

    Article  CAS  Google Scholar 

  • Pascale, S., Lucarini, V., Feng, X., Porporato, A., & ul Hasson, S. (2016). Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario. Climate Dynamics, 46(3–4), 1331–1350. https://doi.org/10.1007/s00382-015-2648-4

    Article  Google Scholar 

  • Perur, N., Mehar, G., & Roy, H. (1973). Soil fertility evaluation to serve Indian farmers (Bulletin). Department of Agriculture, Mysore.

  • Purvaja, R., & Ramesh, R. (2001). Natural and anthropogenic methane emission from coastal wetlands of South India. Environmental Management, 27(4), 547–557. https://doi.org/10.1007/s002670010169

    Article  CAS  Google Scholar 

  • Raich, J. W., & Schlesinger, W. H. (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81–99. https://doi.org/10.1034/j.1600-0889.1992.t01-1-00001.x

    Article  CAS  Google Scholar 

  • Renault, P., & Stengel, P. (1994). Modeling oxygen diffusion in aggregated soils: Anaerobiosis inside the aggregates. Soil Science Society of America Journal, 58(4), 1017–1023. https://doi.org/10.2136/sssaj1994.03615995005800040004x

    Article  CAS  Google Scholar 

  • Rey, A., Petsikos, C., Jarvis, P. G., & Grace, J. (2005). Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. European Journal of Soil Science, 56(5), 1–11. https://doi.org/10.1111/j.1365-2389.2004.00699.x

    Article  CAS  Google Scholar 

  • Richards, P. W. (1966). The tropical rain-forest. An ecological study. Cambridge Univ.

    Google Scholar 

  • Ruser, R., Flessa, H., Russow, R., Schmidt, G., Buegger, F., & Munch, J. C. (2006). Emission of N2O, N2, and CO2 from soil fertilized with nitrate: Effect of compaction, soil moisture, and rewetting. Soil Biology & Biochemistry, 38(2), 263–274. https://doi.org/10.1016/j.soilbio.2005.05.005

    Article  CAS  Google Scholar 

  • Saari, A., Smolander, A., & Martikainen, P. J. (2004). Methane consumption in a frequently nitrogen-fertilized and limed spruce forest soil after clear-cutting. Soil Use and Management, 20, 65–73. https://doi.org/10.1111/j.1475-2743.2004.tb00338.x

    Article  Google Scholar 

  • Salimi, S., Almuktar, S. A., & Scholz, M. (2021). Impact of climate change on wetland ecosystems: A critical review of experimental wetlands. Journal of Environmental Management, 286, 112160. https://doi.org/10.1016/j.jenvman.2021.112160

    Article  CAS  Google Scholar 

  • Sanchez-Garcia, C., Oliveira, B. R., Keizer, J. J., Doerr, S. H., & Urbanek, E. (2020). Water repellency reduces soil CO2 efflux upon rewetting. Science of the Total Environment, 708, 135014. https://doi.org/10.1016/j.scitotenv.2019.135014

    Article  CAS  Google Scholar 

  • Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houweling, S., Patra, P. K., & Ciais, P. (2020). The global methane budget 2000–2017. Earth System Science Data, 12(3), 1561–1623. https://doi.org/10.5194/essd-12-1561-2020

    Article  Google Scholar 

  • Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M. A., & Zechmeister-Boltenstern, S. (2010). Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. European Journal of Soil Science, 61(5), 683–696. https://doi.org/10.1111/j.1365-2389.2010.01277.x

    Article  CAS  Google Scholar 

  • Schindlbacher, A., Zechmeister-Boltenstern, S., & Butterbach-Bahl, K. (2004). Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. Journal of Geophysical Research: Atmospheres, 109(D17). https://doi.org/10.1029/2004JD004590

  • Shaher, S., Chanda, A., Das, S., Das, I., Giri, S., Samanta, S., Mukherjee, A. D. (2020). Summer methane emissions from sewage water–fed tropical shallow aquaculture ponds characterized by different water depths. Environmental Science and Pollution Research, 27(15), 18182–18195. https://doi.org/10.1007/s11356-020-08296-0

  • Shu, H. Y., Jiang, H., Chen, X., & Sun, W. (2016). Variation characteristics of water vapor flux in Anji Phyllostachys edulis forest ecosystem. Chinese Journal of Ecology, 35, 1154–1161. https://doi.org/10.13292/j.1000-4890.201605.006

  • Singh, S., Kulshreshtha, K., & Agnihotri, S. (2000). Seasonal dynamics of methane emission from wetlands. Chemosphere – Global Change Science, 2(1), 39–46. https://doi.org/10.1016/s1465-9972(99)00046-x

  • Smith, K. A. (2017). Changing views of nitrous oxide emissions from agricultural soil: Key controlling processes and assessment at different spatial scales. European Journal of Soil Science, 68, 137–155. https://doi.org/10.1111/ejss.12409

    Article  CAS  Google Scholar 

  • Stewart, R. I. A., Dossena, M., Bohan, D. A., Jeppesen, E., Kordas, R. L., Ledger, M. E., Meerhoff, M., Moss, B., Mulder, C., Shurian, J. B., Suttle, B., Thompson, R., Trimmer, M., & Woodward, G. (2013). Mesocosm experiments as a tool for ecological climate-change research. Advances in Ecological Research, 48, 71–181. https://doi.org/10.1016/B978-0-12-417199-2.00002-1

    Article  Google Scholar 

  • Subbiah, B. V., & Asija, G. L. (1956). A rapid procedure for estimation of available N in soil. Current Science., 25, 259–260.

    CAS  Google Scholar 

  • Thokchom, A., & Yadava, P. S. (2014). Soil CO2 flux in the different ecosystems of North East India. Current Science, 99–105.

  • Tran, D. H., Hoang, T. N., Tokida, T., Tirol-Padre, A., & Minamikawa, K. (2018). Impacts of alternate wetting and drying on greenhouse gas emission from paddy field in Central Vietnam. Soil Science and Plant Nutrition, 64(1), 14–22. https://doi.org/10.1080/00380768.2017.1409601

    Article  CAS  Google Scholar 

  • Tsai, C. P., Huang, C. M., Yuan, C. S., & Yang, L. (2020). Seasonal and diurnal variations of greenhouse gas emissions from a saline mangrove constructed wetland by using an in situ continuous GHG monitoring system. Environmental Science and Pollution Research, 1–11. https://doi.org/10.1007/s11356-020-08115-6

  • Unger, S., Máguas, C., Pereira, J. S., David, T. S., & Werner, C. (2010). The influence of precipitation pulses on soil respiration — Assessing the Birch effect by stable carbon isotopes. Soil Biology & Biochemistry, 42, 1800–1810. https://doi.org/10.1016/j.soilbio.2010.06.019

    Article  CAS  Google Scholar 

  • Van den Bos, R. M. (2003). Human influence on carbon fluxes in coastal peatlands: Process analysis, quantification and prediction.

  • Walkley, A., & Black, I. A. (1934). Determination of organic carbon in soil. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • Wang, J., Wang, G., Hu, H., & Wu, Q. (2010). The influence of degradation of the swamp and alpine meadows on CH4 and CO2 fluxes on the Qinghai-Tibetan Plateau. Environmental Earth Sciences, 60(3), 537–548.https://doi.org/10.1007/s12665-009-0193-3

  • Werner, C., Davis, K., Bakwin, P., Yi, C., Hurst, D., & Lock, L. (2003). Regional-scale measurements of CH4 exchange from a tall tower over a mixed temperate/boreal lowland and wetland forest. Globle Change Biology, 9(9), 1251–1261. https://doi.org/10.1046/j.1365-2486.2003.00670.x

    Article  Google Scholar 

  • Xu, H., Cai, Z. C., & Tsuruta, H. (2003). Soil moisture between ricegrowingricegrowing seasons affects methane emission, production and oxidation. Soil Science Society of America Journal, 67(4), 1147–1157. https://doi.org/10.2136/sssaj2003.1147

    Article  CAS  Google Scholar 

  • Xu, M., & Qi, Y. (2001). Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology, 7, 667–677.

    Article  Google Scholar 

  • Yin, S., Bai, J., Wang, W., Zhang, G., Jia, J., Cui, B., & Liu, X. (2019). Effects of soil moisture on carbon mineralization in floodplain wetlands with different flooding frequencies. Journal of Hydrology, 574, 1074–1084. https://doi.org/10.1016/j.jhydrol.2019.05.007

    Article  CAS  Google Scholar 

  • Young, P. (1996). The “New Science” of wetland restoration. Environmental Science & Technology, 30(7), 292A-296A. https://doi.org/10.1021/es962317y

    Article  CAS  Google Scholar 

  • Zebarth, B. J., Forge, T. A., Goyer, C., & Brin, L. D. (2015). Effect of soil acidification on nitrification in soil. Canadian Journal of Soil Science, 95(4), 359–363. https://doi.org/10.4141/cjss-2015-040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author is grateful to the Department of Science and Technology, Government of India, for providing the fellowship (Women Scientist-A) under which the present research work is carried out, as well as to the staff of the Forest Ecology and Climate Change Division of Forest Research Institute, for their kind cooperation and constant assistance in the field while monitoring the GHG emission and providing lab assistance for soil testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asha Raturi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raturi, A., Singh, H., Kumar, P. et al. Characterizing the post-monsoon CO2, CH4, N2O, and H2O vapor fluxes from a tropical wetland in the Himalayan foothill. Environ Monit Assess 194, 50 (2022). https://doi.org/10.1007/s10661-021-09721-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09721-8

Keywords

Navigation