Skip to main content
Log in

Trace level determination of eleven nervous system–active pharmaceutical ingredients by switchable solvent-based liquid-phase microextraction and gas chromatography–mass spectrometry with matrix matching calibration strategy

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study utilized switchable solvent liquid-phase microextraction (SS-LPME) to enrich eleven nervous system active pharmaceutical ingredients (APIs) from aqueous samples for their determination at trace levels by gas chromatography mass spectrometry. The analytes selected for the study included APIs utilized in antidepressant, antipsychotic, antiepileptic, and anti-dementia drugs. Parameters of the microextraction method including switchable solvent volume, concentration and volume of the trigger agent (sodium hydroxide), and sample agitation period were optimized univariately to boost extraction efficiency. Under the optimum conditions, the detection limits calculated for the analytes were in the range of 0.20–8.0 ng/mL, and repeatability for six replicate measurements as indicated by percent relative standard deviation values were below 10%. Matrix matching calibration strategy was used to enhance quantification accuracy for the analytes. The percent recovery results calculated for the eleven analytes ranged between 86 and 117%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

The data sets generated during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Alcantara, G. K. S., Calixto, L. A., Rocha, B. A., Júnior, F. B., de Oliveira, A. R. M., & de Gaitani, C. M. (2020). A fast DLLME-LC-MS/MS method for risperidone and its metabolite 9-hydroxyrisperidone determination in plasma samples for therapeutic drug monitoring of patients. Microchemical Journal, 156, 104894. https://doi.org/10.1016/j.microc.2020.104894

  • Ali, H. M., Gamal, M., Abdelwahab, N. S., & Farid, N. F. (2019). Simple GC–MS method for analysis of Levetiracetam and process-related toxic impurity. Microchemical Journal, 146, 1236–1240. https://doi.org/10.1016/j.microc.2019.02.063

  • Almalki, A. J., Clark, C. R., Abiedalla, Y., & DeRuiter, J. (2020). GC–MS analysis of N-(bromodimethoxybenzyl)-2-, 3-, and 4-methoxyphenethylamines: Inverse analogues of the psychoactive 25B-NBOMe drug. Forensic Chemistry, 21, 100277. https://doi.org/10.1016/j.forc.2020.100277

  • Alshana, U., Hassan, M., Al-Nidawi, M., Yilmaz, E., & Soylak, M. (2020). Switchable-hydrophilicity solvent liquid-liquid microextraction. TrAC Trends in Analytical Chemistry, 131, 116025. https://doi.org/10.1016/j.trac.2020.116025

  • Ameline, A., Garnier, D., Gheddar, L., Richeval, C., Gaulier, J. M., Raul, J. S., & Kintz, P. (2019). Identification and analytical characterization of seven NPS, by combination of 1H NMR spectroscopy, GC–MS and UPLC–MS/MS®, to resolve a complex toxicological fatal case. Forensic Science International, 298, 140–148. https://doi.org/10.1016/j.forsciint.2019.03.003

  • Badulla, W. F., Özcan, S., Atkoşar, Z., & Arli, G. (2021). Study of electrochemical behavior of escitalopram oxalate using hanging mercury drop electrode and its determination in human urine and pharmaceuticals. Journal of the Iranian Chemical Society, 18(4), 739–750. https://doi.org/10.1007/s13738-020-02066-y

    Article  CAS  Google Scholar 

  • Bin Jardan, Y. A., Mohamed, K., Abbas, N., El-Gendy, M., Alsaif, N., Alanazi, M., Hefnawy, M. (2021). Development and validation of GC–MS method for determination of methcathinone and its main metabolite in mice plasma and brain tissue after SPE: Pharmacokinetic and distribution study. Journal of Pharmaceutical and Biomedical Analysis, 194, 113798. https://doi.org/10.1016/j.jpba.2020.113798

  • Caban, M., Lis, E., Kumirska, J., & Stepnowski, P. (2015). Determination of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS(SIM) method based on Speedisk extraction disks and DIMETRIS derivatization. Science of The Total Environment, 538, 402–411. https://doi.org/10.1016/j.scitotenv.2015.08.076

  • Dalgıç Bozyiğit, G., Fırat Ayyıldız, M., Chormey, D. S., Onkal Engin, G., & Bakırdere, S. (2020). Dispersive liquid-liquid microextraction based preconcentration of selected pesticides and escitalopram oxalate, haloperidol, and olanzapine from wastewater samples prior to determination by GC-MS. Journal of AOAC International, 104(1), 91–97. https://doi.org/10.1093/jaoacint/qsaa082

    Article  Google Scholar 

  • Dalgıç Bozyiğit, G., Fırat Ayyıldız, M., Selali Chormey, D., Onkal Engin, G., & Bakırdere, S. (2021). Accurate quantification of nervous system drugs in aqueous samples at trace levels by binary solvent dispersive liquid–liquid microextraction-gas chromatography mass spectrometry [Article]. Environmental Toxicology and Chemistry, 40(6), 1570–1575. https://doi.org/10.1002/etc.5020

    Article  CAS  Google Scholar 

  • Dembitsky, V. M., Dzhemileva, L., Gloriozova, T., & D’yakonov, V. (2020). Natural and synthetic drugs used for the treatment of the dementia. Biochemical and Biophysical Research Communications, 524(3), 772–783. https://doi.org/10.1016/j.bbrc.2020.01.123

  • Doğan, B., Elik, A., & Altunay, N. (2020). Determination of paracetamol in synthetic urea and pharmaceutical samples by shaker-assisted deep eutectic solvent microextraction and spectrophotometry. Microchemical Journal, 154, 104645. https://doi.org/10.1016/j.microc.2020.104645

  • Duan, L., Zhang, Y., Wang, B., Zhou, Y., Wang, F., Sui, Q., Yu, G. (2021). Seasonal occurrence and source analysis of pharmaceutically active compounds (PhACs) in aquatic environment in a small and medium-sized city, China. Science of The Total Environment, 769, 144272. https://doi.org/10.1016/j.scitotenv.2020.144272

  • Fırat, M., Bodur, S., Tışlı, B., Özlü, C., Chormey, D. S., Turak, F., & Bakırdere, S. (2018). Vortex-assisted switchable liquid-liquid microextraction for the preconcentration of cadmium in environmental samples prior to its determination with flame atomic absorption spectrometry. Environmental Monitoring and Assessment, 190(7), 393. https://doi.org/10.1007/s10661-018-6786-0

    Article  CAS  Google Scholar 

  • Guitart, C., & Readman, J. W. (2010). Critical evaluation of the determination of pharmaceuticals, personal care products, phenolic endocrine disrupters and faecal steroids by GC/MS and PTV-GC/MS in environmental waters. Analytica Chimica Acta, 658(1), 32–40. https://doi.org/10.1016/j.aca.2009.10.066

  • Hassan, M., Uzcan, F., Alshana, U., & Soylak, M. (2021). Switchable-hydrophilicity solvent liquid–liquid microextraction prior to magnetic nanoparticle-based dispersive solid-phase microextraction for spectrophotometric determination of erythrosine in food and other samples. Food Chemistry, 348, 129053. https://doi.org/10.1016/j.foodchem.2021.129053

  • Jain, R., Jha, R. R., Kumari, A., & Khatri, I. (2021). Dispersive liquid-liquid microextraction combined with digital image colorimetry for paracetamol analysis. Microchemical Journal, 162, 105870. https://doi.org/10.1016/j.microc.2020.105870

  • Kafkala, S., Matthaiou, S., Alexaki, P., Abatzis, M., Bartzeliotis, A., & Katsiabani, M. (2008). New gradient high-performance liquid chromatography method for determination of donepezil hydrochloride assay and impurities content in oral pharmaceutical formulation. Journal of Chromatography A, 1189(1), 392–397. https://doi.org/10.1016/j.chroma.2007.12.015

  • Khan, W. A., Arain, M. B., Yamini, Y., Shah, N., Kazi, T. G., Pedersen-Bjergaard, S., & Tajik, M. (2020). Hollow fiber-based liquid phase microextraction followed by analytical instrumental techniques for quantitative analysis of heavy metal ions and pharmaceuticals. Journal of Pharmaceutical Analysis, 10(2), 109–122. https://doi.org/10.1016/j.jpha.2019.12.003

  • Kiszkiel-Taudul, I. (2021). Determination of antihistaminic pharmaceuticals in surface water samples by SPE-LC-MS/MS method. Microchemical Journal, 162, 105874. https://doi.org/10.1016/j.microc.2020.105874

  • Koeber, R., Kluenemann, H. H., Waimer, R., Koestlbacher, A., Wittmann, M., Brandl, R., Haen, E. (2012). Implementation of a cost-effective HPLC/UV-approach for medical routine quantification of donepezil in human serum. Journal of Chromatography B, 881–882, 1–11. https://doi.org/10.1016/j.jchromb.2011.10.027

  • Lindberg, R. H., Namazkar, S., Lage, S., Östman, M., Gojkovic, Z., Funk, C., Tysklind, M. (2021). Fate of active pharmaceutical ingredients in a northern high-rate algal pond fed with municipal wastewater. Chemosphere, 271, 129763. https://doi.org/10.1016/j.chemosphere.2021.129763

  • Meirinho, S., Rodrigues, M., Fortuna, A., Falcão, A., & Alves, G. (2020). Liquid chromatographic methods for determination of the new antiepileptic drugs stiripentol, retigabine, rufinamide and perampanel: A comprehensive and critical review. Journal of Pharmaceutical Analysis. https://doi.org/10.1016/j.jpha.2020.11.005

  • Melchor-Martínez, E. M., Jiménez-Rodríguez, M. G., Martínez-Ruiz, M., Peña-Benavides, S. A., Iqbal, H. M. N., Parra-Saldívar, R., & Sosa- Hernández, J. E. (2021). Antidepressants surveillance in wastewater: Overview extraction and detection. Case Studies in Chemical and Environmental Engineering, 3, 100074. https://doi.org/10.1016/j.cscee.2020.100074

  • Mokh, S., El Khatib, M., Koubar, M., Daher, Z., & Al Iskandarani, M. (2017). Innovative SPE-LC-MS/MS technique for the assessment of 63 pharmaceuticals and the detection of antibiotic-resistant-bacteria: A case study natural water sources in Lebanon. Science of The Total Environment, 609, 830–841. https://doi.org/10.1016/j.scitotenv.2017.07.230

  • Ntoupa, P. S. A., Armaos, K. P., Athanaselis, S. A., Spiliopoulou, C. A., & Papoutsis, I. I. (2020). Study of the distribution of antidepressant drugs in vitreous humor using a validated GC/MS method. Forensic Science International, 317, 110547. https://doi.org/10.1016/j.forsciint.2020.110547

  • Payán, M. R., López, M. Á. B., Fernández-Torres, R., Navarro, M. V., & Mochón, M. C. (2009). Hollow fiber-based liquid-phase microextraction (HF-LPME) of ibuprofen followed by FIA-chemiluminescence determination using the acidic permanganate–sulfite system. Talanta, 79(3), 911–915. https://doi.org/10.1016/j.talanta.2009.05.018

  • Rakic, A., Miljkovic, B., Pokrajac, M., & Vucicevic, K. (2007). High-performance liquid chromatographic method for the determination of moclobemide and its two major metabolites in human plasma. Journal of Pharmaceutical and Biomedical Analysis, 43(4), 1416–1422. https://doi.org/10.1016/j.jpba.2006.10.032

  • Ramos Payán, M., Bello López, M. Á., Fernández-Torres, R., Callejón Mochón, M., & Gómez Ariza, J. L. (2010). Application of hollow fiber-based liquid-phase microextraction (HF-LPME) for the determination of acidic pharmaceuticals in wastewaters. Talanta, 82(2), 854–858. https://doi.org/10.1016/j.talanta.2010.05.022

  • Reichert, J. F., Souza, D. M., & Martins, A. F. (2019). Antipsychotic drugs in hospital wastewater and a preliminary risk assessment. Ecotoxicology and Environmental Safety, 170, 559–567. https://doi.org/10.1016/j.ecoenv.2018.12.021

  • Santana-Mayor, Á., Rodríguez-Ramos, R., Herrera-Herrera, A. V., Socas-Rodríguez, B., & Rodríguez-Delgado, M. Á. (2021). Deep eutectic solvents. The new generation of green solvents in analytical chemistry. TrAC Trends in Analytical Chemistry, 134, 116108. https://doi.org/10.1016/j.trac.2020.116108

  • Saracino, M. A., Mercolini, L., Flotta, G., Albers, L. J., Merli, R., & Raggi, M. A. (2006). Simultaneous determination of fluvoxamine isomers and quetiapine in human plasma by means of high-performance liquid chromatography. Journal of Chromatography B, 843(2), 227–233. https://doi.org/10.1016/j.jchromb.2006.06.001

  • Saracino, M. A., Tallarico, K., & Raggi, M. A. (2010). Liquid chromatographic analysis of oxcarbazepine and its metabolites in plasma and saliva after a novel microextraction by packed sorbent procedure. Analytica Chimica Acta, 661(2), 222–228. https://doi.org/10.1016/j.aca.2009.12.030

  • Sarıkaya, M., Ulusoy, H. I., Morgul, U., Ulusoy, S., Tartaglia, A., Yılmaz, E., Kabir, A. (2021). Sensitive determination of Fluoxetine and Citalopram antidepressants in urine and wastewater samples by liquid chromatography coupled with photodiode array detector. Journal of Chromatography A, 1648, 462215. https://doi.org/10.1016/j.chroma.2021.462215

  • Snamina, M., Wietecha-Posłuszny, R., & Zawadzki, M. (2019). Postmortem analysis of human bone marrow aspirate - Quantitative determination of SSRI and SNRI drugs. Talanta, 204, 607–612. https://doi.org/10.1016/j.talanta.2019.06.054

  • Souza, D. M., Reichert, J. F., & Martins, A. F. (2018). A simultaneous determination of anti-cancer drugs in hospital effluent by DLLME HPLC-FLD, together with a risk assessment. Chemosphere, 201, 178–188. https://doi.org/10.1016/j.chemosphere.2018.02.164

  • Turan, N. B., Erkan, H. S., Chormey, D. S., Cağlak, A., Bakirdere, S., & Engin, G. O. (2020). Feasibility studies on the effect of natural plant compounds on sludge characteristics in a batch-type aerobic reactor and N-butyryl-L homoserine lactone. Analytical Letters, 53(15), 2431–2444.

    Article  CAS  Google Scholar 

  • Wielens Becker, R., Wilde, M. L., Salmoria Araújo, D., Seibert Lüdtke, D., & Sirtori, C. (2020). Proposal of a new, fast, cheap, and easy method using DLLME for extraction and preconcentration of diazepam and its transformation products generated by a solar photo-Fenton process. Water Research, 184, 116183. https://doi.org/10.1016/j.watres.2020.116183

  • Yilmaz, B., & Alkan, E. (2019). Determination of flurbiprofen in pharmaceutical preparations by GC–MS. Arabian Journal of Chemistry, 12(8), 2077–2083. https://doi.org/10.1016/j.arabjc.2014.12.038

  • Zdravkovic, S. A., Duong, C. T., Hellenbrand, A. A., Duff, S. R., & Dreger, A. L. (2018). Establishment of a reference standard database for use in the qualitative and semi-quantitative analysis of pharmaceutical contact materials within an extractables survey by GC–MS. Journal of Pharmaceutical and Biomedical Analysis, 151, 49–60. https://doi.org/10.1016/j.jpba.2017.12.054

Download references

Acknowledgements

The authors acknowledge Ali Raif, Deva, Biofarma, and Santa-Farma Pharmaceutical Companies for providing the active pharmaceutical ingredients used in this study.

Funding

This work was supported by Yildiz Technical University Scientific Research Projects Coordination Unit (Project Number: FDK-2020–3842).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sezgin Bakırdere.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozyiğit, G.D., Ayyıldız, M.F., Chormey, D.S. et al. Trace level determination of eleven nervous system–active pharmaceutical ingredients by switchable solvent-based liquid-phase microextraction and gas chromatography–mass spectrometry with matrix matching calibration strategy. Environ Monit Assess 194, 58 (2022). https://doi.org/10.1007/s10661-021-09708-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09708-5

Keywords

Navigation