Skip to main content

Advertisement

Log in

Evaluation of the relationship between root nutrients and root biomass in lands under different management practices

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mastering ecological dynamics necessitates identifying the substance cycles in biomass. In terms of sustainable soil productivity, the nutrient content of below-ground biomass is just as significant as the above-ground biomass, which fluctuates depending on land use. Yet, there were limited studies on determining the quantity of plant nutrient stocks, particularly in the below-ground biomass, in rangeland, forest, and plantation areas coexisting in the same ecological zone. In this regard, it is expected that the findings of this study will contribute to the literature. For this purpose in mind, distinct samples were taken from three depth levels (0–10 cm, 10–20 cm, 20–30 cm) to determine root biomass and nutrient stocks of roots in neighboring rangeland, forest, and plantation areas, and roots were divided into diameter classes, and below-ground biomass amounts and nutritional contents of below-ground biomass were determined. According to the results obtained, the total root biomass in the rangelands is 8.02 Mg ha−1, total root biomass was 5.95 Mg ha−1 in forest areas, and in plantation areas, the total root biomass is 6.94 Mg ha−1. Root biomass in the 0–10 cm soil layer constituted 78% of the total biomass. Also, for all land uses, the highest below-ground biomass concentrations were observed for Al, Fe, K, Mg, and Ca. The amounts of Al, Fe, K and Mg in the below-ground biomass followed the sequence of rangeland, plantation, and forest from high to low. Nutrient stocks in below-ground biomass and the effects of increases in root biomass on plant growth should be evaluated by future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and/or its supplementary materials.

References

  • Bardgett, R. D., Mommer, L., & De Vries, F. T. (2014). Going underground: Root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29(12), 692–699.

    Article  Google Scholar 

  • Brassard, B. W., Chen, H. Y., Bergeron, Y., & Paré, D. (2011). Differences in fine root productivity between mixed-and single-species stands. Functional Ecology, 25(1), 238–246.

    Article  Google Scholar 

  • Cahill, J. F., McNickle, G. G., Haag, J. J., Lamb, E. G., Nyanumba, S. M., & Clair, C. C. S. (2010). Plants integrate information about nutrients and neighbors. Science, 328(5986), 1657–1657.

  • Canadell, J., Jackson, R., Ehleringer, J., Mooney, H., Sala, O., & Schulze, E.-D. (1996). Maximum rooting depth of vegetation types at the global scale. Oecologia, 108(4), 583–595.

    Article  CAS  Google Scholar 

  • Chen, W., Koide, R. T., & Eissenstat, D. M. (2017). Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests. Journal of Ecology, 106(1), 148–156.

    Article  Google Scholar 

  • Chen, W., Zhang, Q., Cihlar, J., Bauhus, J., & Price, D. T. (2004). Estimating fine-root biomass and production of boreal and cool temperate forests using above-ground measurements: A new approach. Plant and Soil, 265(1), 31–46.

    Article  CAS  Google Scholar 

  • Claus, A., & George, E. (2005). Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Canadian Journal of Forest Research, 35(7), 1617–1625.

    Article  Google Scholar 

  • Domisch, T., Finér, L., Dawud, S. M., Vesterdal, L., & Raulund-Rasmussen, K. (2015). Does species richness affect fine root biomass and production in young forest plantations? Oecologia, 177(2), 581–594.

    Article  Google Scholar 

  • Eisenhauer, N., Lanoue, A., Strecker, T., Scheu, S., Steinauer, K., Thakur, M. P., & Mommer, L. (2017). Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Scientific Reports, 7(1), 1–8.

    Article  CAS  Google Scholar 

  • Eissenstat, D., Wells, C., Yanai, R., & Whitbeck, J. (2000). Building roots in a changing environment: Implications for root longevity. New Phytologist, 147(1), 33–42.

    Article  CAS  Google Scholar 

  • Finér, L., Helmisaari, H. S., Lõhmus, K., Majdi, H., Brunner, I., Børja, I., Eldhused, T., Godbold, D.,Grebenc, T., Konôpka, B., Kraigher, H., Slovenia, M. R., Möttönen, M., Ohashi, J., Oleksyn, I., Ostonen, V., Uri, E., & Vanguelova, E. (2007). Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosystems, 141(3), 394–405.

  • Finér, L., Ohashi, M., Noguchi, K., & Hirano, Y. (2011). Factors causing variation in fine root biomass in forest ecosystems. Forest Ecology and Management, 261(2), 265–277.

    Article  Google Scholar 

  • Gierus, M., Kleen, J., Loges, R., & Taube, F. (2012). Forage legume species determine the nutritional quality of binary mixtures with perennial ryegrass in the first production year. Animal Feed Science and Technology, 172(3–4), 150–161.

    Article  Google Scholar 

  • Gill, R. A., & Jackson, R. B. (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147(1), 13–31.

    Article  Google Scholar 

  • Gleeson, S. K., & Tilman, D. (1992). Plant allocation and the multiple limitation hypothesis. The American Naturalist, 139(6), 1322–1343.

    Article  Google Scholar 

  • Griffiths, M., & York, L. M. (2020). Targeting root ion uptake kinetics to increase plant productivity and nutrient use efficiency. Plant Physiology, 182(4), 1854–1868.

    Article  CAS  Google Scholar 

  • Helmisaari, H.-S., Derome, J., Nöjd, P., & Kukkola, M. (2007). Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiology, 27(10), 1493–1504.

    Article  CAS  Google Scholar 

  • Hooper, D. U., Adair, E. C., Cardinale, B. J., Byrnes, J. E., Hungate, B. A., Matulich, K. L., Gonzalez, A., Duffy, J. E., Gamfeldt, L., & O’Connor, M. I. (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486(7401), 105–108.

    Article  CAS  Google Scholar 

  • Jackson, R. B., Mooney, H. A., & Schulze, E.-D. (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences, 94(14), 7362–7366.

    Article  CAS  Google Scholar 

  • Kroon, H., Hendriks, M., van Ruijven, J., Ravenek, J., Padilla, F. M., Jongejans, E., Visser, E. J. V., & Mommer, L. (2012). Root responses to nutrients and soil biota: Drivers of species coexistence and ecosystem productivity. Journal of Ecology, 100(1), 6–15.

    Article  Google Scholar 

  • Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., Mellado-Vázquez, P. L., Malik, A. A., Roy, J., Scheu, S., Steinbeiss, S., Thomson, B. C., Trumbore, S. E., & Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6(1), 1–8.

    Google Scholar 

  • Li, Y., Wang, Y., Shen, X., & Liu, F. (2021). The combinations of sulfur and molybdenum fertilizations improved antioxidant capacity of grazing Guizhou semi-fine wool sheep under copper and cadmium stress. Ecotoxicology and Environmental Safety, 222, 112520.

  • Li, W., Finnegan, P. M., Dai, Q., Guo, D., & Yang, M. (2021b). Metabolic acclimation supports higher aluminium-induced secretion of citrate and malate in an aluminium-tolerant hybrid clone of Eucalyptus. BMC Plant Biology, 21(1), 1–12.

    Article  Google Scholar 

  • Li, X., Zhang, X., Wu, J., Shen, Z., Zhang, Y., Xu, X., Fan, Y., Zhao, Y., & Yan, W. (2011). Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environmental Earth Sciences, 64(7), 1911–1919.

    Article  Google Scholar 

  • Liu, Y., Geng, X., Wei, D., & Dai, D. (2020). Grazing exclusion enhanced net ecosystem carbon uptake but decreased plant nutrient content in an alpine steppe. Catena, 195, 104799.

  • Luizão, F. J., Luizão, R. C., & Proctor, J. (2007). Soil acidity and nutrient deficiency in central Amazonian heath forest soils. Plant Ecology, 192(2), 209–224.

    Article  Google Scholar 

  • Ma, W., Yang, Y., He, J., Zeng, H., & Fang, J. (2008). Above-and below-ground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Science in China Series C: Life Sciences, 51(3), 263–270.

    Article  Google Scholar 

  • McCormack, M. L., Dickie, I. A., Eissenstat, D. M., Fahey, T. J., Fernandez, C. W., Guo, D., Helmisaari, H. S., Hobbie, E., Iversen, C. M., Jackson, R. B., Leppalammi-Kujansuu, J., Norby, R. J., Phillips, R. P., Pregitzer, K. S., Pritchard, S. G., Rewald, B., & Zadworny, M. (2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 207(3), 505–518.

    Article  Google Scholar 

  • Mofidi, M., Jafari, M., Tavili, A., Rashtbari, M., & Alijanpour, A. (2013). Grazing exclusion effect on soil and vegetation properties in Imam Kandi Rangelands. Iran. Arid Land Research and Management, 27(1), 32–40.

    Article  Google Scholar 

  • Mommer, L., Cotton, T. A., Raaijmakers, J. M., Termorshuizen, A. J., van Ruijven, J., Hendriks, M., Rijssel, S. Q., Mortel, J. E., Paauw, J. W., Schijlen, E., Smit- Tiekstra, A. E., Berends, F., Kroon, H., & Dumbrell, A. J. (2018). Lost in diversity: The interactions between soil-borne fungi, biodiversity and plant productivity. New Phytologist, 218(2), 542–553.

    Article  Google Scholar 

  • Munkholm, L. J., Hansen, E. M., & Olesen, J. E. (2008). The effect of tillage intensity on soil structure and winter wheat root/shoot growth. Soil Use and Management, 24(4), 392–400.

    Article  Google Scholar 

  • Mueller, K. E., Tilman, D., Fornara, D. A., & Hobbie, S. E. (2013). Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology, 94(4), 787–793.

    Article  Google Scholar 

  • Palta, J. A., & Yang, J. (2014). Crop root system behaviour and yield. Field Crops Research, 165, 1–149.

    Article  Google Scholar 

  • Priess, J., De Koning, G., & Veldkamp, A. (2001). Assessment of interactions between land use change and carbon and nutrient fluxes in Ecuador. Agriculture, Ecosystems & Environment, 85(1–3), 269–279.

    Article  Google Scholar 

  • Ravenek, J. M., Bessler, H., Engels, C., Scherer-Lorenzen, M., Gessler, A., Gockele, A., Luca, E. D., Schmid, B., Weisser, S. W., Wirth, C., Temperton, V. M., Roscher, C., & Mommer, L. (2014). Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos, 123(12), 1528–1536.

    Article  Google Scholar 

  • Ravindranath, N., & Ostwald, M. (2008). Methods for below-ground biomass. Carbon Inventory Methods Handbook for Greenhouse Gas Inventory, Carbon Mitigation and Roundwood Production Projects, 149–156.

  • Ricardo, F. H. (2014). Giehl, Nicolaus von Wirén, Root Nutrient Foraging. Plant Physiology, 166(2), 509–517. https://doi.org/10.1104/pp.114.245225

    Article  CAS  Google Scholar 

  • Sainju, U. M., Allen, B. L., Lenssen, A. W., & Ghimire, R. P. (2017). Root biomass, root/shoot ratio, and soil water content under perennial grasses with different nitrogen rates. Field Crops Research, 210, 183–191.

    Article  Google Scholar 

  • Schenk, H. J., & Jackson, R. B. (2002). The global biogeography of roots. Ecological Monographs, 72(3), 311–328.

    Article  Google Scholar 

  • Shahzad, Z., & Amtmann, A. (2017). Food for thought: How nutrients regulate root system architecture. Current Opinion in Plant Biology, 39, 80–87.

    Article  CAS  Google Scholar 

  • Tingting, Z., Zifan, L., Feng, A., & Guishui, X. (2020). Mechanism of rubber tree sapling death under aluminum stress. Chinese Journal of Tropical Crops, 41(12), 2439.

    Google Scholar 

  • Torres, J. R., Sanchez-Mejia, Z. M., Arreola-Lizárraga, J. A., Yépez, E. A., Reynaga-Franco, F., & Choix, F. J. (2021). Root biomass and productivity in subtropical arid mangroves from the Gulf of California. Rhizosphere, 18, 100356.

  • Yan, L., Zhou, G., & Zhang, F. (2013). Effects of different grazing intensities on grassland production in China: A meta-analysis. PLoS One, 8(12), e81466.

  • Yavuz, T., & Karadag, Y. (2015). The effect of fertilization and grazing applications on root length and root biomass of some rangeland grasses. Turkish Journal of Field Crops, 20(1), 38–42.

    Article  Google Scholar 

  • Zeng, W., Xiang, W., Zhou, B., Ouyang, S., Zeng, Y., Chen, L., Freschet, G. T., Valverde-Barrantes, O. J., & Milcu, A. (2021). Positive tree diversity effect on fine root biomass: Via density dependence rather than spatial root partitioning. Oikos, 130(1), 1–14.

    Article  Google Scholar 

  • Zhou, G., Zhou, X., Nie, Y., Bai, S. H., Zhou, L., Shao, J., Cheng, W., Hu, F., & Fu, Y. (2018). Drought-induced changes in root biomass largely result from altered root morphological traits: Evidence from a synthesis of global field trials. Plant, Cell & Environment, 41(11), 2589–2599.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Çomaklı.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgili, A., Çomaklı, E. Evaluation of the relationship between root nutrients and root biomass in lands under different management practices. Environ Monit Assess 193, 799 (2021). https://doi.org/10.1007/s10661-021-09585-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09585-y

Keywords

Navigation