Skip to main content

Advertisement

Log in

Soil carbon pool and dynamics of different fractions in subalpine temperate coniferous forests of Western Himalaya, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Natural forests have the ability to sequester atmospheric carbon for a long time and fix it into the soil through a variety of processes such as decomposition and root respiration. The changing environment of alpine forests alters the characteristics of soil carbon, causing it to be divided into several components. The current study looked at soil carbon fractions and how they changed over time, both annually and seasonally, at different depths and along an altitudinal gradient. Seasonal sampling was carried out at three depths, with standard procedures employed to estimate the results of soil carbon fractions. The results showed that the surface layer (10 cm) had the highest value of all soil qualities such as SOC, Fraction I, Fraction II, Fraction III, SOM and active pool of carbon than the subsurface (20 cm and 30 cm) layers with autumn dominating the seasons. Site 1 had the highest value and Site 4 lowest, indicating that altitudinal variance had a direct relationship with distinct soil fractions. On an annual basis, the corresponding soil carbon fraction variation was examined, revealing the maximum retention capability at 30 cm of depth. According to the findings, the soils of the Western Himalayas have a high potential for carbon sequestration and conversion into various fractions, with significant annual and seasonal change due to changing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Baize, D. (1988). Soil Science Analyses. John Wiley & Sons.

    Google Scholar 

  • Bhadwal, S., & Singh, R. (2002). Carbon sequestration estimates for forestry options under different land-use scenarios in India. Current Science, 83, 1380–1386.

    Google Scholar 

  • Bhat, B. A., Sheikh, M. A., & Tiwari, A. (2014). Impact of various edaphic factors on AMF spore population and diversity in Catharanthus roseus at Gwalior. International Journal of Plant Science, 9, 1–6.

    Google Scholar 

  • Bhatt, M., Patel, E., & Jasrai, T. Y. (2015). Dynamics of soil organic carbon and soil texture in Marine National Park, Gujarat. International Journal of Science and Research Publications, 5, 1–5.

    Google Scholar 

  • Bhattacharyya, T., Pal, D. K., Chandran, P., Ray, S. K., Mandal, C., & Telpande, B. (2008). Soil carbon storage capacity as a tool to polarize area for carbon sequestration. Current Science, 95, 482–494.

    CAS  Google Scholar 

  • Chan, K. Y., Bowman, A., & Oates, A. (2001). Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys. Soil Science, 166, 61–67. https://doi.org/10.1097/00010694-200101000-00009

    Article  CAS  Google Scholar 

  • Dar, A. D., Pathak, B., & Fulekar, M. H. (2015). Assessment of soil organic carbon stock of Temperate Coniferous Forest in Northern Kashmir. International Journal of Environment, 4, 168–171. https://doi.org/10.3126/ije.v4i1.12186

    Article  Google Scholar 

  • Dar, A. J., & Somaiah, S. (2015). Altittudual variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas India. Environmental Monitoring and Assessment, 187, 1–15. https://doi.org/10.1007/s10661-014-4204-9

    Article  CAS  Google Scholar 

  • Dhruw, S. K., Singh, L. J. & Singh, A. K. (2009). Storage and sequestration of carbon by leguminous and nonleguminous trees on red lateritic soil of Chhattisgarh. Indian Forester, 135, 531-538.

  • Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C., & Wisniewski, J. (1994). Carbon pools and fluxes of global forest ecosystems. Science, 263, 185–190.

    Article  CAS  Google Scholar 

  • FAO. (2006). Global Forest Resource Assessment 2005: Progress towards sustainable forest management. UN FAO.

    Google Scholar 

  • Feller, C., & Beare, M. H. (1997). Physical control of soil organic matter dynamics in the tropics. Geoderma Amsterdam, 79, 69–116. https://doi.org/10.1016/S0016-7061(97)00039-6

    Article  CAS  Google Scholar 

  • Florides, G. A., & Christodoulides, P. (2009). Global warming and carbon dioxide through science. Environment International, 35, 390–401. https://doi.org/10.1016/j.envint.2008.07.007

    Article  CAS  Google Scholar 

  • Griffiths, R. P., Madritch, M. D., & Swanson, A. K. (2009). The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties. Forest Ecology and Management, 25, 1–7. https://doi.org/10.1016/j.foreco.2008.08.010

    Article  Google Scholar 

  • Gupta, M. K., & Sharma, S. D. (2008). Effect of tree plantation on soil properties, profile morphology and productivity index I. Poplar in Uttarakhand. Annals of Forest sciences 16, 209–224.

  • Han, X. H., Atsushi, T., Mitsuru, T., & Shiqing, L. (2009). Effects of land-cover type topography on soil organic carbon storage on Northern Loess plateau China. Acta Agriculturae Scandinavica Section B Plant Soil Science, 60, 326–334. https://doi.org/10.1080/09064710902988672

    Article  CAS  Google Scholar 

  • Hu, Y., Wang, Z., Wang, Q., Wang, S., Zhang, Z., Zhang, Z., & Zhao, Y. (2016). Climate change affects soil labile organic carbon fractions in a Tibetan alpine meadow. Journal of Soils and Sediments, 17, 326–339. https://doi.org/10.1007/s11368-016-1565-4

    Article  CAS  Google Scholar 

  • IPCC. (2000). Land use land-use change and forestry: a special report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

    Google Scholar 

  • Jehangir, A., Yousf, A. R., Reshi, Z. A., Tanveer, A., & Ahmad, A. (2012). Comparison of physico-chemical and microbial properties of soils in north western Himalaya India. International Journal of Soil Science, 7, 71–81.

    Article  Google Scholar 

  • Joshi, G., & Niegi, G. C. S. (2015). Physico-chemical properties along soil profiles of two dominant forest types in Western Himalaya. Current Science, 109, 798–803.

    CAS  Google Scholar 

  • Joshi, N. R., Tewari, A., & Singh, V. (2013). Biomass and carbon accumulation potential towards climate change mitigation by young plantation of dalbergia sissoo Roxb And Eucalyptus hybrid in terrain central Himalaya India. American Journal of Research Communication, 1, 261–274.

    Google Scholar 

  • Karam, S. D., Abdu, A., Radziah, O., Shamshuddin, J., Husni, M. H. A., Hamid, A. H., & Seema, T. (2013). Changes in the physic-chemical properties of soils under rehabilitated lowland dipterocarps forest at Chikus forest reserve Perak Malaysia. The Journal of Macro Trends in Applied Science, 1, 42–57.

    Google Scholar 

  • Kleber, M., Sollins, P., & Sutton, R. (2007). A conceptual model of organo-mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry, 85, 9–24. https://doi.org/10.1007/s10533-007-9103-5

    Article  Google Scholar 

  • Kogel-Knabner, I. (2002). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology Biochemistry, 34, 139–162. https://doi.org/10.1016/S0038-0717(01)00158-4

    Article  CAS  Google Scholar 

  • Krishan, G., Srivastav, S. K., Kumar, S., Saha, S. K., & Dadhwal, V. K. (2009). Quantifying the underestimation of soil organic carbon by the Walkley and Black technique – examples from Himalayan and Central Indian soils. Current Science, 96, 1133–1136.

    CAS  Google Scholar 

  • Kuimi, T. V., & Jayakumar, S. (2012). Methods to Estimate Above-Ground Biomass and Carbon Stock in Natural Forests. Ecosystem & Ecography. https://doi.org/10.4172/2157-7625.1000116

  • Kumari, B., Sheikh, M. A., Tiwari, A., & Sharma, S. (2018). Tree diversity and carbon fraction variation in urban forests of Central Indian with reference to Gwalior division, India. International Research Journal of Environmental Science, 7 ,33-41.

  • Lal, R. (2004). The potential of carbon sequestration in soils of South Asia ISCO 2004. Brisbane: 13th International Soil Conservation Organisation Conference.

  • Lehmann, J., Skjemstad, J., Sohi, S., Charter, J., Barson, M., Falloon, P., Coleman, K., Woodbury, P., & Krull, E. (2008). Australian climate carbon cycle feedback reduced by soil black carbon. Nature Geoscience, 1, 832–835. https://doi.org/10.1038/ngeo358

    Article  CAS  Google Scholar 

  • Matos, S. M., Freese, D., lazak1, S. A., et al. (2010). Organic-carbon and nitrogen stocks and organic-carbon fractions in soil under mixed pine and oak forest stands of different ages in NE Germany. Journal of Plant Nutrition and Soil Science. 173, 654–661.

  • Miller, B. C., Weber, S. L. O., & Scaramizza, F. J. (2011). Oxidizable fraction of organic carbon in an argisol under different land use systems. Universlade Federal De Lavras Brasil, 18, 215–222. https://doi.org/10.1590/S0104-77602012000200005

    Article  Google Scholar 

  • Naik, S. K., Maurya, S., & Bhatt, B. P. (2016). Soil organic carbon stocks and fractions in different orchards of eastern plateau and hill region of India. Agroforestry System, 91, 541–552. https://doi.org/10.1007/s10457-016-9957-4

    Article  Google Scholar 

  • Nath, C. P., Nath, J. A., Reang, D., et al. (2021). Tree diversity soil organic carbon lability and ecosystem carbon storage under a fallow age chronosequence in North East India. Environmental and Sustainability Indicators, 10, 100122. https://doi.org/10.1016/j.indic.2021.100122

    Article  Google Scholar 

  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., et al. (2011). A large and Persistent Carbon Sink in the World’s Forests. Science, 19, 988–993. https://doi.org/10.1126/science.1201609

    Article  CAS  Google Scholar 

  • Parton, W. J., & Rasmussen, P. E. (1994). Long-term effects of crop management in wheat-fallow: II. CENTURY model simulations. Soil Science Society of America Journal, 58, 530–536. https://doi.org/10.2136/sssaj1994.03615995005800020040x

    Article  Google Scholar 

  • Paul, E. A., Follet, R. F., Leavitt, S. W., Halvorson, A., Peterson, G. A., & Lyon, D. J. (1997). Radiocarbon dating for determination of soil organic pool sizes and dynamics. Soil Science Society of America Journal, 61, 1058–1067. https://doi.org/10.2136/sssaj1997.03615995006100040011x

    Article  CAS  Google Scholar 

  • Powlson, D. S., Brookes, P. C., & Christensen, B. T. (1987). Measurement of soil microbial biomass provides an indication of changes in total soil organic matter due to straw incorporation. Soil Biology & Biochemistry, 19, 159–164. https://doi.org/10.1016/0038-0717(87)90076-9

    Article  CAS  Google Scholar 

  • Pribyl, D. W. (2010). A critical review of the conventional SOC to SOM conversion factor. Geoderma, 156, 75–83. https://doi.org/10.1016/j.geoderma.2010.02.003

    Article  CAS  Google Scholar 

  • Rawat, V. S. (2012). Litter fall and soil nutrient returns in community managed forest in Lamgara block of Uttarakhand. Nature and Science, 10, 38–42.

    Google Scholar 

  • Rustad, L. E., Campbell, J. L., Marion, G. M., Norby, R. J., et al. (2001). A meta-analysis of the response of soil respiration net nitrogen mineralization and above ground plant growth to experimental ecosystem warning. Oecologia, 126, 543–562. https://doi.org/10.1007/s004420000544

    Article  CAS  Google Scholar 

  • Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R., & Kapos, V. (2014). Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management, 5, 81–91. https://doi.org/10.4155/cmt.13.77

    Article  CAS  Google Scholar 

  • Semwal, D. P., Uniyal, P. L., Bahuguna, Y. M., & Bhatt, A. B. (2009). Soil nutrient storage under different forest types in a part of central Himalayas India. Annals of Forestry, 17, 43–52.

    Google Scholar 

  • Sharma, C. M., Gairola, S., Baduni, N. P., Ghildiyal, S. K., & Suyal, S. (2011). Variation in carbon stocks on different slope aspects in seven major forest types of temperate region of Garhwal Himalaya India. Journal of Bioscience, 36, 701–708. https://doi.org/10.1007/s12038-011-9103-4

    Article  CAS  Google Scholar 

  • Sharma, G., Sharma, R., & Sharma, E. (2009). Impact of stand age on soil C N and P dynamics in a 40-year Chronosequence of alder-cardamom agroforestry stands of the Sikkim Himalaya. Pedobiologia, 52, 401–414. https://doi.org/10.1016/j.pedobi.2009.01.003

    Article  CAS  Google Scholar 

  • Sheikh, A. M., Kumar, M., & Bussmann, W. R. (2009). Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carbon Balance and Management, 4, 1–6. https://doi.org/10.1186/1750-0680-4-6

    Article  CAS  Google Scholar 

  • Sheikh, M. A., Bhat, B. A., Tiwari, A., & Thakur, A. (2013). Impact of Physico-Chemical Parameters of Soil on AMF Diversity during different Seasons in Gwalior Region. International Journal of Agronomy and Plant Production, 4, 3284–3288.

    CAS  Google Scholar 

  • Sheikh, M. A., Tiwari, A., & Sharma, S. (2017a). Carbon sequestration potential of various litter components in temperate coniferous forests of Kashmir Himalaya India. Archives of Agriculture and Environmental Science, 2, 162–166.

    Google Scholar 

  • Sheikh, M. A., Tiwari, A., & Sharma, S. (2017b). Moisture content and its annual variation in temperate coniferous forests of Kashmir Himalaya. International Journal of Current Research, 9, 55472–55475.

    Google Scholar 

  • Sheikh, M. A., Tiwari, A., Anjum, J., et al. (2021). Dynamics of carbon storage and status of standing vegetation in temperate coniferous forest ecosystem of north western Himalaya India. Vegetos. https://doi.org/10.1007/s42535-021-00265-3

    Article  Google Scholar 

  • Shelukindo, H. B., Semu, E., Msanya, B. M., Munishi, P. K. T., Maliondo, S. M. S., & Singh, B. R. (2014). Potential of carbon storage in major soil types of the Miomo woodland Ecosystem Tanzania A review. American Open Journal of Agriculture Research, 2, 1–21.

    Google Scholar 

  • Shorabi, H., Bakhtiari, B. S., & Ahmadi, K. (2016). Above and below ground biomass and carbon stocks of different tree plantations in central Iran. Journal of Arid Land, 8, 138–145.

    Article  Google Scholar 

  • Smith, P., Cotrufo, M. F., et al. (2015). Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil Discuss, 2, 537–586. https://doi.org/10.5194/soil-1-665-2015

    Article  CAS  Google Scholar 

  • Sun, X., Tang, Z., Ryan, M. G., et al. (2019). Changes in soil organic carbon contents and fractionations of forests along a climatic gradient in China. Forest Ecosystems, 6, 1–12. https://doi.org/10.1186/s40663-019-0161-7

    Article  Google Scholar 

  • Trumbore, S. E., Chadwick, O. A., & Amundson, R. (1996). Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science, 272, 393–396.

    Article  CAS  Google Scholar 

  • Valentini, R., Matteucci, G., & Dolman, A. J. (2000). Respiration as the main determinant of carbon balance in European forests. Nature, 404, 861-865.

  • Walkey, A., & Black, C. A. (1934). An examination of the method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–39.

    Article  Google Scholar 

  • Wani, N. R., & Qaisar, K. N. (2014). Carbon Per cent in Different Components of Tree Species and Soil Organic Carbon Pool Under these Tree Species in Kashmir Valley. Current World Environment, 9, 174–181.

    Article  Google Scholar 

  • Wending, B., Jucksch, I., Mendonca, E. S., & Alvarenga, R. C. (2010). Organic matter pools of soil under pines and annual cultures. Communications in Soil Science and Plant Analysis, 41, 1707–1722. https://doi.org/10.1080/00103624.2010.489135

    Article  CAS  Google Scholar 

  • Yang, Y., Guo, J., Chen, G., Yin, Y., Gao, R., & Lin, C. (2009). Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China. Plant and Soil, 323, 153–162. https://doi.org/10.1007/s11104-009-9921-4

    Article  CAS  Google Scholar 

  • Yang, Y. H., Mohammat, A., Feng, J. M., Zhou, R., & Fang, J. Y. (2007). Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry, 84, 131–141. https://doi.org/10.1111/j.1365-2486.2008.01591.x

    Article  Google Scholar 

  • Zhao, Q., Bai, J., Liu, Q., Lu, Q., Gao, Z., & Wang, J. (2016). Spatial and seasonal Variation of Soil Carbon and Nitrogen Content and Stock in a Tidal Salt Marsh with Tamarix chinensis China. Wetlands, 36, 145–152.

    Article  CAS  Google Scholar 

  • Zhou, G. Y., Liu, S. G., Li, Z., Zhang, D. Q., et al. (2006). Old-growth forests can accumulate carbon in soils. Science. https://doi.org/10.1126/science.1130168

Download references

Acknowledgment

The author wishes to express his gratitude to the Divisional Forest Officer of the Lidder and Anantnag divisions for granting permission to conduct samples and the rangers of concern ranges, foresters and forest guards for their assistance throughout the research. School of Studies in Botany is acknowledged for offering necessary laboratory facilities. Dr. Brijesh Kumar, Rayees Ahmad Mir and Musadiq Hussain Bhat deserve special thanks for their helpful recommendations and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muzamil Ahmad Sheikh.

Ethics declarations

Conflict of interest

There is no conflict of interest with anybody or organization

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, M.A., Tiwari, A., Anjum, J. et al. Soil carbon pool and dynamics of different fractions in subalpine temperate coniferous forests of Western Himalaya, India. Environ Monit Assess 193, 756 (2021). https://doi.org/10.1007/s10661-021-09545-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09545-6

Keywords

Navigation