Skip to main content
Log in

Determination and mapping of the spatial distribution of cesium-137 in the terrestrial environment of Greece, over a period of 28 years (1998 to 2015)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, we are applying the GIS techniques in order to record the data that have been collected for cesium-137, over the for the period 1998 to 2015, for the terrestrial environment in Greece. Following the Chernobyl Nuclear Power Plant (CNPP) accident in 1986, extended fieldwork was conducted for the determination of cesium-137 concentrations in the terrestrial environment. In 2011, in the light of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, new campaigns were organized in order to assess the variation in cesium-137 activity concentrations. The measured data, combined with data taken from the databases of the Environmental Radioactivity Laboratory (NCSR‘Demokritos’, in Athens, Greece), as well as, from the European Atlas of Cesium Deposition on Europe, are being used for the spatial distribution analysis of cesium-137 in the country. Furthermore, are used for the temporal analysis of this radionuclide in a long-term basis. Moreover, we are using the ERICA Assessment Tool for the calculation of the dose rate that the studied organisms (plants of Poaceae spp. and mammals of Bovidae spp.) receive due to the exposure to cesium-137. All gathered information provides us with thematic maps, designed through the GIS techniques, that allow for an appropriate representation of cesium-137 presence in the country nowadays. This study provides an insightful view of the behavior of this anthropogenic radionuclide that is useful for future research in order to elucidate its behavior in long-term periods. The knowledge of the environmental fate of radionuclides is important because it contributes to the projection of long-term risks resulting from radionuclide releases, as well as, for the selection of cost-effective remediation strategies. Furthermore, it provides the opportunity to conduct a comprehensive risk assessment in the region, as the studied organisms were exposed to low-level ionizing radiation. But, as it was shown, on the level of ecosystem, no significant impact was estimated. However, regarding the future objectives, further consideration of the exposure levels should be considered while taking also into account the exposure to natural and background radiation and the exposure to spontaneous emission of anthropogenic radionuclides, especially if we want to consider the eventual effects of protracted low-level ionising radiation on the various levels of life’s organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Albergel, A., Martin, D., Strauss, B., & Gros, J. M. (1988). The Chernobyl accident: Modelling of dispersion over Europe of the radioactive plume and comparison with air activity measurements. Atmospheric Environment, 22(11), 2431–2444.

    Article  CAS  Google Scholar 

  • Almgren, S., Nilsson, E., Erlandsson, B., & Isaksson, M. (2006). GIS supported calculations of 137Cs deposition in Sweden based on precipitation data. Science of the Total Environment, 368(2–3), 804–813.

    Article  CAS  Google Scholar 

  • Andersson I., Lonsjo H., Rosen K. (2001). Long-term studies on transfer of 137Cs from soil to vegetation and to grazing lambs in a mountain area in Northern Sweden. Journal of Environmental Radioactivity, 52, 45-66

    Article  CAS  Google Scholar 

  • Baba, A., Deniz, O., Ozcan, H., Erees, S. F., & Cetiner, S. Z. (2008). Geochemical and radionuclide profile of Tuzla geothermal field. Turkey. Environmental Monitoring and Assessment, 145(1–3), 361–374.

    Article  CAS  Google Scholar 

  • Belivermis, M., Kılıç, Ӧ, Çotuk, Y., & Topcuoğlu, S. (2010). The effects of physicochemical properties on gamma emitting natural radionuclide levels in the soil profile of Istanbul. Environmental Monitoring and Assessment, 163(1–4), 15–26.

    Article  CAS  Google Scholar 

  • Beresford, N. A., Barnett, C. L., Wright, S. M., Howard, B. J., & Crout, N. M. J. (2007). Factors contributing to radiocaesium variability in upland sheep flocks in west Cumbria (United Kingdom). Journal of Environmental Radioactivity, 98(1–2), 50–68.

    Article  CAS  Google Scholar 

  • Brandt, J., Christensen, J. H., & Frohn, L. M. (2002). Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model. Atmospheric Chemistry and Physics Discussions, European Geosciences Union, 2(3), 825–874.

    Google Scholar 

  • Caro, A., Legarda, F., Romero, L., Herranz, M., Barrera, M., et al. (2013). Map on predicted deposition of Cs-137 in Spanish soils from geostatistical analyses. Journal of Environmental Radioactivity, 115, 53–59.

    Article  CAS  Google Scholar 

  • Chappell, A. (1996). Modelling the spatial variation of processes in the redistribution of soil: Digital terrain models and 137Cs in southwest Niger. Geomorphology, 7(1–3), 249–261.

    Article  Google Scholar 

  • Cinelli, G., Tondeur, F., & Dehandschutter, B. (2018). Mapping potassium and thorium concentrations in Belgian soils. Journal of Environmental Radioactivity, 184, 127–139.

    Article  CAS  Google Scholar 

  • Cinelli, G., Tollefsen, T., Bossew, P., Gruber, V., Bogucarskis, K., De Felice, L., & De Cort, M. (2019). Digital version of the European Atlas of natural radiation. Journal of Environmental Radioactivity, 196, 240–252.

    Article  CAS  Google Scholar 

  • Davydchuk, V. (1999). Radioactively contaminated forests: GIS applicaton for the remedial policy development and environmental risk assessment. In Contaminated Forests (pp. 369-376). Springer, Dordrecht.

  • De Cort, M., Dubois, G., Fridman, S. D., Germenchuk, M. G., Izrael, Y. A., Janssens, A., et al. (1998). Atlas of Caesium Deposition on Europe after the Chernobyl Accident. Office for Official Publications of the European Communities, Luxembourg, 1998, ISBN 92–828–3140-X, Catalogue number CG-NA-16–733–29-C, EUR 16733.

  • Doering, C., Twining, J., Rout, S., Iurian, A. R, & Howard, B. (2021). A revised IAEA data compilation for estimating the soil to plant transfer of radionuclides in tropical environments. Journal of Environmental Radioactivity, 232, 106570

  • Dubois G. and De Cort M. (2001). Mapping 137Cs deposition: data validation methods and data interpretation. Journal of Environmental Radioactivity, 53(3):271–289.

  • Dubois, G., Tollefsen, T., Bossew, P., & De Cort, M. (2004). GIS and radioecology: A data perspective. In 10th EC GI & GIS Workshop, ESDI State of the Art, Warsaw, Poland (pp. 23–25).

  • ERICA. (2007). The ERICA Assessment Tool: Environmental Risk from Ionizing Contaminants: assessment and management. Version 1.3, May 2019. http://www.erica-tool.eu. (Access, May 2020).

  • ERL. (2020). Environmental radioactivity laboratory. http://ipta.demokritos.gr/erl/erl.html. (access, May 2020).

  • Evangeliou, N., Balkanski, Y., Cozic, A., & Møller, A. P. (2013a). Global transport and deposition of 137Cs following the Fukushima nuclear power plant accident in Japan: Emphasis on Europe and Asia using high-resolution model versions and radiological impact assessment of the human population and the environment using interactive tools. Environmental Science and Technology, 47(11), 5803–5812.

    Article  CAS  Google Scholar 

  • Evangeliou, N., Balkanski, Y., Cozic, A., & Moller, A. P. (2013b). Simulations of the transport and deposition of 137Cs over Europe after the Chernobyl Nuclear Power Plant accident: Influence of varying emission-altitude and model horizontal and vertical resolution. Atmospheric Chemistry Physics, 13, 7183–7198.

    Article  CAS  Google Scholar 

  • Evangeliou, N., Balkanski, Y., Florou, H., Eleftheriadis, K., Cozic, A., & Kritidis, P. (2015). Global deposition and transport efficiencies of radioactive species with respect to modelling credibility after Fukushima (Japan, 2011). Journal of Environmental Radioactivity, 149, 164–175.

    Article  CAS  Google Scholar 

  • Evangeliou, N., Hamburger, T., Talerko, N., Zibtsev, S., Bondar, Y., Stohl, A., et al. (2016). Reconstructing the Chernobyl Nuclear Power Plant (CNPP) accident 30 years after. A unique database of air concentration and deposition measurements over Europe. Environmental Pollution, 216, 408–418.

    Article  CAS  Google Scholar 

  • Evangeliou, N., Hamburger, T., Cozic, A., Balkanski, Y., & Stohl, A. (2017). Inverse modeling of the Chernobyl source term using atmospheric concentration and deposition measurements. Atmospheric Chemistry Physics, 17, 8805–8824.

    Article  CAS  Google Scholar 

  • Facchinelli, A., Magnoni, M., Gallini, L., et al. (2002). 137Cs Contamination from Chernobyl of Soils in Piemonte (North-West Italy): Spatial distribution and deposition model. Water, Air, & Soil Pollution, 134, 339–350.

    Article  Google Scholar 

  • Franic, Z., Sega, K., Petrinec, B., & Marovic, G. (2009). Long-term investigations of post-Chernobyl radiocaesium in fallout and air in North Croatia. Environmental Monitoring and Assessment, 148, 315–323.

    Article  CAS  Google Scholar 

  • Florou, H., Trabidou, G., & Nikolaou, G. (2007). An assessment of the external radiological impact in areas of Greece with elevated natural radioactivity. Journal of Environmental Radioactivity, 93, 74–83.

    Article  CAS  Google Scholar 

  • Florou, H., Sykioti, O., Evangeliou, N., Mavrokefalou, G., et al. (2014). Remote radiological assessment in the marine environment: SMOS and MODIS observations combined to 137Cs activity concentrations in the Aegean Sea-Greece. In Proc. Third International Conference on Radioecology and Environmental Radioactivity, Barcelona, Spain (pp. 7-12).

  • Gaines, K. F., Novak, J. M., Bobryk, C. W., & Blas, S. A. (2014). Toxicodynamic modeling of 137Cs to estimate white-tailed deer background levels for the Department of Energy’s Savannah River Site. Environmental Monitoring and Assessment, 186, 2067–2079.

    Article  CAS  Google Scholar 

  • GEODATA.gov.gr. (2019). Greek Creative Commons license Attribution (CC BY v.3.0). https://geodata.gov.gr, http://geodata.gov.gr/en/dataset/periphereies-elladas, http://geodata.gov.gr/en/dataset/oria-demon-kallikrates. (Access September 2019).

  • Gribov, A., & Krivoruchko K. (2020). Empirical Bayesian kriging implementation and usage. Science of The Total Environment, 722.

  • Grytsyuk, N., Davydchuk, V., & Arapis, G. (2006). Application of GIS technologies in ecotoxicology: A radioecological case study. In Book: Ecotoxicology, ecological risk assessment and multiple stressors, pp 269–278, eds. Springer Netherlands, Dordrecht.

  • Hashimoto, S., Matsuura, T., Nanko, K., Linkov, I., et al. (2013). Predicted spatio-temporal dynamics of radiocesium deposited onto forests following the Fukushima nuclear accident. Scientific Reports, 3, 2564.

    Article  Google Scholar 

  • Hass, H., Memmesheimer, M., Geib, H., Jakobs, H. J., Laube, M., & Ebel, A. (1990). Simulation of the Chernobyl radioactive cloud over Europe using the EURAD model. Atmospheric Environment, Part a, General Topics, 24(3), 673–692.

    Article  Google Scholar 

  • Helebrant, J. (2008). Interpolation methods and their use in radiation protection. XXX Days of Radiation Protection Conference Proceedings of the 30-th Days of Radiation Protection, Slovakia, 10–14/06/2008, p. 348.

  • Hiemstra, P. H., Pebesma, E. J., Twenhöfel, C. J., & Heuvelink, G. B. (2008). Automatic real-time interpolation of radiation hazards: A prototype and system architecture considerations. International Journal of Spatial Data Infrastructures Research, 3(3), 58–72.

    Google Scholar 

  • Huisman, O., & De By, R. A. (2009). Principles of geographic information systems. ITC Educational Textbook Series1, 17. https://kartoweb.itc.nl/geometrics/Publications/PoGIS2009%20Chapter%204%20selection.pdf

  • IAEA. (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical Report Series No. 472. International Atomic Energy Agency, Vienna

  • IAEA. (2014). Handbook of parameter values for the prediction of radionuclide transfer to wildlife. Technical Report Series No. 479. International Atomic Energy Agency, Vienna

  • ICRP. (2009). Environmental Protection: Transfer Parameters for Reference Animals and Plants. ICRP Publication 114. Ann. ICRP 39 (6)

  • Isaksson, M., Erlandsson, B., & Mattsson, S. (2001). A 10-year study of the 137Cs distribution in the soil and a comparison of Cs soil inventory with precipitation-determined deposition. Journal of Environmental Radioactivity, 55, 47–59.

    Article  CAS  Google Scholar 

  • JRC. (2001). European Soil Database of the Joint Research Centre. TEXT-SRF-DOM: Dominant surface textural class of the STU. Soil Geographical Database of Eurasia. Available from: http://eusoils.jrc.ec.europa.eu/. (Access June 2019).

  • JRC. (2019). Radioactivity Environmental Monitoring (REM), EU – Joint Research Centre. https://rem.jrc.ec.europa.eu/RemWeb/Index.aspx#. (Access May 2019).

  • Kashparov, V., Levchuk, S., Zhurba, M., Protsak, V., Khomutinin, Y., et al. (2018). Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone. Earth System Science Data, 10, 339–353.

    Article  Google Scholar 

  • Kleinschmidt, R., Black, J., & Akber, R. (2011). Mapping radioactivity in groundwater to identify elevated exposure in remote and rural communities. Journal of Environmental Radioactivity, 102(3), 235–243.

    Article  CAS  Google Scholar 

  • Kritidis, P., Florou, H., & Papanicolaou, E. (1990). Delayed and late impact of the Chernobyl accident on the Greek environment. Radiation Protection Dosimetry., 30, 187–190.

    CAS  Google Scholar 

  • Kritidis, P., & Florou, H. (1995). Environmental study of radioactive caesium in Greek lake fish after the Chernobyl accident. Journal of Environmental Radioactivity, 28(3), 285–293.

    Article  CAS  Google Scholar 

  • Kritidis, P., & Florou, H. (2001). Radiological impact in Greece of the Chernobyl accident in Greece – A ten-year retrospective synopsis. Health Physics, 80(5), 440–446.

    Article  CAS  Google Scholar 

  • Kritidis, P., Florou, H., Eleftheriadis, K., Evangeliou, N., Gini, M., Sotiropoulou, M., et al. (2012). Radioactive pollution in Athens, Greece due to the Fukushima nuclear accident. Journal of Environmental Radioactivity, 114, 100–104.

    Article  CAS  Google Scholar 

  • Krivoruchko, K. (2011). GIS, spatial statistics and two accidents at the nuclear power plants. In Proceedings of International Symposium on Earth Science and Technology (pp. 5–12). Kyushi University Fukuoka, Japan.

  • Mabit, L., & Bernard, C. (2007). Assessment of spatial distribution of fallout radionuclides through geostatistics concept. Journal of Environmental Radioactivity, 97(2–3), 206–219.

    Article  CAS  Google Scholar 

  • Mabit, L., Bernard, C., Makhlouf, M., & Laverdière, M. R. (2008). Spatial variability of erosion and soil organic matter content estimated from 137Cs measurements and geostatistics. Geoderma, 145(3–4), 245–251.

    Article  CAS  Google Scholar 

  • Manolopoulou, M., Vagena, E., Stoulos, S., Ioannidou, A., & Papastefanou, C. (2011). Radioiodine and radiocesium in Thessaloniki, Northern Greece due to the Fukushima nuclear accident. Journal of Environmental Radioactivity, 102, 796–797.

    Article  CAS  Google Scholar 

  • Manolopoulou, M., Stoulos, S., Ioannidou, A., Vagena, E., & Papastefanou, C. (2013). Radioecological indexes of fallout measurements from the Fukushima nuclear accident. Ecological Indicators, 25, 197–199.

    Article  CAS  Google Scholar 

  • Mavrokefalou, G., Florou, H., Sykioti, O., & Parcharidis, I. (2016). Integration of Earth observation satellite data and real time 137Cs measurements in the Greek marine environment to GIS for advances in radiological remote control. In Proc: Living Planet Symposium (Vol. 740, p. 239).

  • Mavrokefalou, G., Florou, H., Sykioti, O., & Kitis, G. (2017). Correlation of 137Cs activity concentrations with MODIS Ocean colour data in the Aegean Sea. In HNPS Proceedings, 45–50. https://doi.org/10.12681/hnps.1957

  • Mavrokefalou, G., Florou, H., & Sykioti, O. (2019). Remote radiological assessment in the marine environment: A pilot study based on Cs-137 measurements and satellite observations in the Aegean Sea. In HNPS Proceedings, 24, 191–197. https://doi.org/10.12681/hnps.1864

  • Mercat-Rommens, C., Chakhar, S., Chojnacki, E., & Mousseau, V. (2010). Coupling GIS and multi-criteria modelling to support post-accident nuclear risk evaluation: An application in the southern France region. Research Report CR-LGI-2010–18, LGI, Ecole Centrale Paris, France.

  • Navas, A., López-Vicente, M., Gaspar, L., & Machín, J. (2013). Assessing soil redistribution in a complex karst catchment using fallout 137Cs and GIS. Geomorphology, 196, 231–241.

    Article  Google Scholar 

  • Paller, M. H., Jannik, G. T., & Baker, R. A. (2014). Effective half-life of caesium-137 in various environmental media at the Savannah River Site. Journal of Environmental Radioactivity, 131, 81–88.

    Article  CAS  Google Scholar 

  • Palsson, S. E., Howard, B. J., Gudnason, K., & Sigurgeirsson, M. A. (2012). Long-term transfer of global fallout 137Cs to cow’s milk in Iceland. Environmental Monitoring and Assessment, 184, 7221–7234.

    Article  CAS  Google Scholar 

  • Papageorgiou, F., Godelitsas, A., Mertzimekis, T. J., Xanthos, S., Voulgaris, N., & Katsantonis, G. (2016). Environmental impact of phosphogypsum stockpile in remediated Schistos waste site (Piraeus, Greece) using a combination of γ-ray spectrometry with geographic information systems. Environmental Monitoring and Assessment, 188(3), 133.

    Article  CAS  Google Scholar 

  • Papastefanou, C., Manolopoulou, M., & Savvidis, T. (1989). Lichens and mosses: Biological monitors of radioactive fallout from the Chernobyl reactor accident. Journal of Environmental Radioactivity, 9, 199–207.

    Article  CAS  Google Scholar 

  • Papastefanou, C., Manolopoulou, M., Stoulos, S., Ioannidou, A., & Gerasopoulos, E. (2005). Cesium-137 in grass from Chernobyl fallout. Journal of Environmental Radioactivity, 83, 253–257.

    Article  CAS  Google Scholar 

  • Petrovic, J., Dordevic, M., Dragovic, R., Gajic, B., & Dragovic, S. (2018). Assessment of radiation exposure to human and non-human biota due to natural radionuclides in terrestrial environment of Belgrade, the capital of Serbia. Environmental Earth Sciences, 77, 290.

    Article  CAS  Google Scholar 

  • Potiriadis, C., Kolovou, M., Clouvas, A., & Xanthos, S. (2012). Environmental radioactivity measurements in Greece following the Fukushima Daichi nuclear accident. Radiation Protection Dosimetry, 150(4), 441–447.

    Article  CAS  Google Scholar 

  • Prister, B. S., Vinogradskaya, V. D., Lev, T. D., Talerko, M. M., Garger, E. K., et al. (2018). Preventive radioecological assessment of territory for optimization of monitoring and countermeasures after radiation accidents. Journal of Environmental Radioactivity, 184, 140–151.

    Article  CAS  Google Scholar 

  • Probonas, M., & Kritidis, P. (1993). Exposure of the Greek population to natural gamma radiation of terrestrial origin. Radiation Protection Dosimetry, 46(2), 123–126.

    Article  CAS  Google Scholar 

  • Prohl, G., Ehlken, S., Fiedler, I., Kirchner, G., Klemt, E., & Zibold, G. (2006). Ecological half-lives of 90Sr and 137Cs in terrestrial and aquatic ecosystems. Journal of Environmental Radioactivity, 91, 41–72.

    Article  CAS  Google Scholar 

  • QGIS Development Team. (2019). QGIS Geographic Information System, Open Source Geospatial Foundation Project, USA. http://qgis.osgeo.org, https://docs.qgis.org/3.10/en/docs/usermanual/, https://docs.qgis.org/2.18/en/docs/user_manual/processing_algs/saga/kriging.html. (Access September 2019).

  • Renaud, P., Pourcelot, L., Metivier, J. M., & Morello, M. (2003). Mapping of 137Cs deposition over eastern France 16 years after the Chernobyl accident. Science of the Total Environment, 309, 257–264.

    Article  CAS  Google Scholar 

  • Sawidis, T., Drossos, E., Heinrich, G., & Papastefanou, C. (1990). Cesium-137 accumulation in higher plants before and after Chernobyl. Environment International, 16, 163–169.

    Article  CAS  Google Scholar 

  • Servitzoglou, N., Stoulos, S., Katsantonis, D., Papageorgiou, M., & Siountas, A. (2018). Natural radioactivity studies of phosphate fertilizers applied on Greek farm soils used for wheat cultivation. Radiation Protection Dosimetry, 181(3), 190–198.

    Article  CAS  Google Scholar 

  • Sotiropoulou, M., Florou, H., & Manolopoulou, M. (2013). Dose rate estimations from 137Cs, 134Cs, and 131I in terrestrial herbivores using the ERICA Tool. In Proc. 22nd Symposium of HNPS, 31 May–1 June, Athens, Greece.

  • Sotiropoulou, M., Florou, H., & Manolopoulou, M. (2015). Application of the ERICA Assessment Tool for the calculation of dose rates in terrestrial herbivore mammals in Greece. In Proc. ENVIRA 2015, 21–25 September, Thessaloniki, Greece.

  • Sotiropoulou, M., Florou, H., & Manolopoulou, M. (2016). Radioactivity measurements and dose rates calculations using ERICA Tool in the terrestrial environment of Greece. Environmental Science and Pollution Research, 23(11), 10872–10882.

    Article  CAS  Google Scholar 

  • Sotiropoulou, M., Florou, H., & Kitis, G. (2017). Calculating the radiological parameters used in non-human biota dose assessment tools using ERICA Tool and site-specific data. Radiation and Environmental Biophysics, 56, 443–451.

    Article  CAS  Google Scholar 

  • Sotiropoulou, M., & Florou, H. (2020). Radiological risk assessment in the terrestrial ecosystem: Comparative study of two software tools used for dose rate calculations. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-08186-5

    Article  Google Scholar 

  • Sotiropoulou, M., & Florou, H. (2021). Measurement and calculation of radionuclide concentration ratios from soil to grass in semi-natural terrestrial habitats in Greece. Journal of Environmental Radioactivity, 237, 106666. https://doi.org/10.1016/j.jenvrad.2021.106666

  • Squire H. M., & Middleton L. J. (1966). Behaviour of caesium 137 in soils and pastures. A long term experiment. Radiation Botany, 6, 413-423

  • Steinhauser, G., Merz, S., Hainz, D., & Sterba, J. H. (2013). Artificial radioactivity in environmental media (air, rainwater, soil, vegetation) in Austria after the Fukushima nuclear accident. Environmental Science and Pollution Research, 20, 2527–2534.

    Article  CAS  Google Scholar 

  • Sutton, T. (2009). A gentle introduction to GIS: Brought to you with Quantum GIS, a Free and Open Source Software GIS Application for everyone. In Book Province of the Eastern Cape, Office of the Premier. http://discoverspatial.in/wp-content/uploads/2018/09/qgis-1.0.0_a-gentle-gis-introduction_en.pdf

  • Thebault, H., y Baena, A. M. R., Andral, B., Barisic, D., Bologa, A., Florou, H., et al. (2008). 137Cs baseline levels in the Mediterranean and Black Sea: A cross-basin survey of the CIESM Mediterranean Mussel Watch programme. Marine Pollution Bulletin, 57(6–12), 801–806.

    Article  CAS  Google Scholar 

  • Tsabaris, C., Evangeliou, N., Fillis, E., Sotiropoulou, M., Patiris, D. L., & Florou, H. (2012). Distribution of natural radioactivity in sediment cores from Amvrakikos Gulf (Western Greece) in the frame of IAEA’s campaign in Adriatic and Ionian Seas. Radiation Protection Dosimetry, 150(4), 474–487.

    Article  CAS  Google Scholar 

  • USDoE. (2004). RESRAD-BIOTA: A tool for implementing a graded approach to biota dose evaluation. ISCORS Technical Report 2004–02 DOE/EH-0676. United States Department of the Environment, Washington D.C.

  • Van Der Perk, M., Burrough, P. A., & Voigt, G. (1998). GIS-based modelling to identify regions of Ukraine, Belarus and Russia affected by residues of the Chernobyl nuclear power plant accident. Journal of Hazardous Materials, 61(1–3), 85–90.

    Article  Google Scholar 

  • Van Der Perk, M., Burema, J. R., Burrough, P. A., Gillett, A. G., & Meer, M. V. D. (2001). A GIS-based environmental decision support system to assess the transfer of long-lived radiocaesium through food chains in areas contaminated by the Chernobyl accident. International Journal of Geographical Information Science, 15(1), 43–64.

    Article  Google Scholar 

  • Whicker, F. W., & Schultz, V. (1982). Radioecology: Nuclear energy and the environment. Vol. II., CRC Press, Inc, Boca Raton, FL.

  • Yeşilkanat, C. M., & Kobya, Y. (2015). Determination and mapping the spatial distribution of radioactivity of natural spring water in the Eastern Black Sea Region by using artificial neural network method. Environmental Monitoring and Assessment, 187, 589.

    Article  CAS  Google Scholar 

Download references

Funding

This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning” in the context of the project “Reinforcement of Postdoctoral Researchers — 2nd Cycle” (MIS-5033021), implemented by the State Scholarships Foundation (ΙΚΥ). No of contract 2019–050-0503–17350.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Sotiropoulou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotiropoulou, M., Mavrokefalou, G., Florou, H. et al. Determination and mapping of the spatial distribution of cesium-137 in the terrestrial environment of Greece, over a period of 28 years (1998 to 2015). Environ Monit Assess 193, 591 (2021). https://doi.org/10.1007/s10661-021-09325-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09325-2

Keywords

Navigation