Skip to main content
Log in

Exploitation of optical and SAR amplitude imagery for landslide identification: a case study from Sikkim, Northeast India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

A Correction to this article was published on 28 July 2021

This article has been updated

Abstract

Detection and mapping of landslides is one of the most important techniques used for reducing the impact of natural disasters especially in the Himalaya, owing to its high amount of tectonic deformation, seismicity, and unfavorable climatic conditions. Moreover, the northeastern part of the Himalaya, severely affected by landslides every monsoon, is poorly studied. The information on the inventories is inhomogeneous and lacking. In this context, satellite-based earth observation data, which has significantly advanced in the last decade and often serves as a potential source for data collection, monitoring, and damage assessment for disasters in a short time span, has been implemented. Keeping in mind the above framework, this study aims to exploit the potentials of Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 optical imagery for identifying new landslides in vegetated and hilly areas of the northeastern part of India. In order to assess the potentials of our data and methodology, a landslide event which occurred on 13 August 2016 13:30 h (IST) in North Sikkim, India, triggered due to rainfall has been explored in detail. The landslide also resulted in the formation of a lake, 2.2 km in length and 290 m in width. Difficulty in procurement of cloud-free datasets immediately after the event led us to the use of Sentinel-1 SAR backscatter data, to assess its potential for this purpose. It is observed that the potential of SAR amplitude imagery is limited to different aspects as per the sensor look direction during the mode of acquisition. Furthermore, the present study also incorporates a change detection algorithm to evaluate the performance of the Sudden Landslide Identification Product (SLIP) model to identify new landslides using Sentinel-2 multispectral imagery. Overall, the results exhibit that integrated usage of both optical and SAR amplitude imagery may provide a plethora of information for identification and mapping of new landslides for damage assessment and early warning. All the above results combined together suggest this method for rapid identification of landslides in the Himalayan terrain with special emphasis on the northeastern part of the Himalaya. The automation of this method for future operational usage is also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

The satellite data (Sentinel-1 and Sentinel-2) that supports the findings of this study are available in the Copernicus Open Access Hub at https://scihub.copernicus.eu/. These datasets are derived from Google Earth Engine, a cloud-based platform. The Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals (IMERG) final run version 4 product was implemented in the present study for the analysis of precipitation. This research product in the IMERG suite can be downloaded from https://pmm.nasa.gov/data-access/downloads/gpm. Elevation dataset was available from Shuttle Radar Topography Mission (SRTM) and derived from Google Earth Engine. However, all the datasets will be available from the authors upon reasonable request.

Change history

References

  • Acharyya, S. K., & Ray, K. K. (1977). Geology of the Darjeeling–Sikkim Himalaya. Guide to Excursion No. 3. In Fourth International Gondwana Symposium (Calcutta). Geological Survey of India (pp. 1-25).

  • Aleotti, P., & Chowdhury, R. (1999). Landslide hazard assessment: Summary review and new perspectives. Bulletin of Engineering Geology and the environment, 58(1), 21–44.

    Article  Google Scholar 

  • ArcGIS. (2020). Post classification processing URL. https://desktop.arcgis.com/en/arcmap/latest/extensions/spatialanalyst/image-classification/processing-classifiedoutput.html, [Online; Accessed 3-March-2020]

  • Baruah, S., Saikia, S., Baruah, S., Bora, P. K., Tatevossian, R., & Kayal, J. R. (2016). The September 2011 Sikkim Himalaya earthquake Mw 6.9: Is it a plane of detachment earthquake? Geomatics, Natural Hazards and Risk7(1), 248-263.

  • Borgatti, L., & Soldati, M. (2010). Landslides and climatic change. Geomorphological hazards and disaster prevention, 87-96. https://doi.org/10.1017/CBO9780511807527.008

  • Bovenga, F., Wasowski, J., Nitti, D. O., Nutricato, R., & Chiaradia, M. T. (2012). Using COSMO/SkyMed X-band and ENVISAT C-band SAR interferometry for landslides analysis. Remote Sensing of Environment, 119, 272–285.

    Article  Google Scholar 

  • Butt, M. J., Umar, M., & Qamar, R. (2013). Landslide dam and subsequent dam-break flood estimation using HEC-RAS model in Northern Pakistan. Natural Hazards, 65(1), 241–254.

    Article  Google Scholar 

  • Bhasin, R., Shabanimashcool, M., Hermanns, R. L., Morken, O. A., Dehls, J. F., & Gupta, V. (2020). Back analysis of shear strength parameters of a large rock slide in Sikkim Himalaya. Journal of Rock Mechanics andTunnelling Technology (JRMTT), 26(2), 81–92.

    Google Scholar 

  • Chai, H. J., Liu, H. C., & Zhang, Z. Y. (2000). The temporal-spatial distribution of damming landslides in China. J Mt Res S1.

  • Cheng, G., Guo, L., Zhao, T., Han, J., Li, H., & Fang, J. (2013). Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA. International Journal of Remote Sensing, 34(1), 45–59.

    Article  CAS  Google Scholar 

  • Confuorto, P., Di Martire, D., Centolanza, G., Iglesias, R., Mallorqui, J. J., Novellino, A., & Calcaterra, D. (2017). Post-failure evolution analysis of a rainfall-triggered landslide by multi-temporal interferometry SAR approaches integrated with geotechnical analysis. Remote sensing of environment188, 51-72.

  • Costa, J. E., & Schuster, R. L. (1988). The formation and failure of natural dams. Geological society of America bulletin, 100(7), 1054–1068.

    Article  Google Scholar 

  • Costa, J. E., & Schuster, R. L. (1991). Documented historical landslide dams from around the world (No. 91-239). US Geological Survey.

  • Cui, P., Dang, C., Zhuang, J. Q., You, Y., Chen, X. Q., & Scott, K. M. (2012). Landslide-dammed lake at Tangjiashan, Sichuan province, China (triggered by the Wenchuan Earthquake, May 12, 2008): Risk assessment, mitigation strategy, and lessons learned. Environmental Earth Sciences, 65(4), 1055–1065.

    Article  Google Scholar 

  • Dasgupta, S., Ganguly, J., & Neogi, S. (2004). Inverted metamorphic sequence in the Sikkim Himalayas: Crystallization history, P-T gradient and implications. Journal of Metamorphic Geology, 22(5), 395–412.

    Article  CAS  Google Scholar 

  • De, R., & Kayal, J. R. (2004). Seismic activity at the MCT in Sikkim Himalaya. Tectonophysics, 386(3–4), 243–248.

    Article  Google Scholar 

  • Degraff, J. V., James, A., & Breheny, P. (2010). The formation and persistence of the Matthieu landslide-dam lake, Dominica. WI. Environmental & Engineering Geoscience, 16(2), 73–89.

    Article  Google Scholar 

  • Dikshit, A., Sarkar, R., Pradhan, B., Segoni, S., & Alamri, A. M. (2020). Rainfall induced landslide studies in Indian Himalayan region: A critical review. Applied Sciences, 10(7), 2466.

    Article  CAS  Google Scholar 

  • Dimri, S., Lakhera, R. C., & Sati, S. (2007). Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya. Landslides, 4(2), 101–111.

    Article  Google Scholar 

  • Drukpa, D., Velasco, A. A., & Doser, D. I. (2006). Seismicity in the Kingdom of Bhutan (1937–2003): Evidence for crustal transcurrent deformation. Journal of Geophysical Research: Solid Earth111(B6).

  • Ermini, L., Casagli, N., & Farina, P. (2006). Landslide dams: Analysis of case histories and new perspectives from the application of remote sensing monitoring techniques to hazard and risk assessment. Italian Journal of Engineering Geology and Environment, Special, 1, 45–52.

    Google Scholar 

  • Evans, S. G., Delaney, K. B., Hermanns, R. L., Strom, A., & Scarascia-Mugnozza, G. (2011). The formation and behaviour of natural and artificial rockslide dams; implications for engineering performance and hazard management. In Natural and artificial rockslide dams (pp. 1-75). Springer, Berlin, Heidelberg.

  • Fan, X., van Westen, C. J., Xu, Q., Gorum, T., & Dai, F. (2012). Analysis of landslide dams induced by the 2008 Wenchuan earthquake. Journal of Asian Earth Sciences, 57, 25–37.

    Article  Google Scholar 

  • Fayne, J. V., Ahamed, A., Roberts-Pierel, J., Rumsey, A. C., & Kirschbaum, D. (2019). Automated satellite-based landslide identification product for Nepal. Earth Interactions, 23(3), 1–21.

    Article  Google Scholar 

  • Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8), 2161–2181.

    Article  Google Scholar 

  • Gallen, S. F., Clark, M. K., Godt, J. W., Roback, K., & Niemi, N. A. (2017). Application and evaluation of a rapid response earthquake-triggered landslide model to the 25 April 2015 Mw 7.8 Gorkha earthquake. Nepal. Tectonophysics, 714, 173–187.

    Article  Google Scholar 

  • Gascon, F., Cadau, E., Colin, O., Hoersch, B., Isola, C., Fernández, B. L., & Martimort, P. (2014, September). Copernicus Sentinel-2 mission: Products, algorithms and Cal/Val. In Earth observing systems XIX (Vol. 9218, p. 92181E). International Society for Optics and Photonics.

  • GEE. (2020). Google Earth Engine Sentinel-1 Algorithms. https://www.developers.google.com/earth-engine/sentinel1. [Online; accessed 23- February-2020].

  • Gorum, T., Fan, X., van Westen, C. J., Huang, R. Q., Xu, Q., Tang, C., & Wang, G. (2011). Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology, 133(3–4), 152–167.

    Article  Google Scholar 

  • Guzzetti, F., Manunta, M., Ardizzone, F., Pepe, A., Cardinali, M., Zeni, G., & Lanari, R. (2009). Analysis of ground deformation detected using the SBAS-DInSAR technique in Umbria. Central Italy. Pure and Applied Geophysics, 166(8), 1425–1459.

    Article  Google Scholar 

  • Hazarika, P., Kumar, M. R., Srijayanthi, G., Raju, P. S., Rao, N. P., & Srinagesh, D. (2010). Transverse tectonics in the Sikkim Himalaya: Evidence from seismicity and focal-mechanism data. Bulletin of the Seismological Society of America, 100(4), 1816–1822.

    Article  Google Scholar 

  • Heleno, S., Matias, M., Pina, P., & Sousa, A. J. (2016). Semiautomated object-based classification of rain-induced landslides with VHR multispectral images on Madeira Island. Natural Hazards and Earth System Sciences, 16(4), 1035–1048.

    Article  Google Scholar 

  • Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Xie, P., & Yoo, S. H. (2015). NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theoretical Basis Document (ATBD) Version4, 26.

  • Jakob, M., Clague, J. J., & Church, M. (2016). Rare and dangerous: Recognizing extra-ordinary events in stream channels. Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 41(1–2), 161–173.

    Article  Google Scholar 

  • Ji, S., Yu, D., Shen, C., Li, W., & Xu, Q. (2020). Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides, 17(6), 1337–1352.

    Article  Google Scholar 

  • Kääb, A. (2002). Monitoring high-mountain terrain deformation from repeated air-and spaceborne optical data: Examples using digital aerial imagery and ASTER data. ISPRS Journal of Photogrammetry and remote sensing, 57(1–2), 39–52.

    Article  Google Scholar 

  • Kayal, J. R. (2001). Microearthquake activity in some parts of the Himalaya and the tectonic model. Tectonophysics, 339(3–4), 331–351.

    Article  Google Scholar 

  • Kumar, A., Bhambri, R., Tiwari, S. K., Verma, A., Gupta, A. K., & Kawishwar, P. (2019a). Evolution of debris flow and moraine failure in the Gangotri Glacier region, Garhwal Himalaya: Hydro-geomorphological aspects. Geomorphology, 333, 152–166.

    Article  Google Scholar 

  • Kumar, P., Yuan, X., Kumar, M. R., Kind, R., Li, X., & Chadha, R. K. (2007). The rapid drift of the Indian tectonic plate. Nature, 449(7164), 894–897.

    Article  CAS  Google Scholar 

  • Kumar, V., Gupta, V., Jamir, I., & Chattoraj, S. L. (2019b). Evaluation of potential landslide damming: Case study of Urni landslide, Kinnaur, Satluj valley. India. Geoscience Frontiers, 10(2), 753–767.

    Article  Google Scholar 

  • Lazecky, M., Comut, F. C., Nikolaeva, E., Bakon, M., Papco, J., Ruiz Armenteros, A. M., ... & Ondrejka, P. (2016). Potential of Sentinel-1A for nation-wide routine updates of active landslide maps.

  • Lee, J. S., Wen, J. H., Ainsworth, T. L., Chen, K. S., & Chen, A. J. (2008). Improved sigma filter for speckle filtering of SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 47(1), 202–213.

    Google Scholar 

  • Li, M. H., Sung, R. T., Dong, J. J., Lee, C. T., & Chen, C. C. (2011). The formation and breaching of a short-lived landslide dam at Hsiaolin Village, Taiwan—Part II: Simulation of debris flow with landslide dam breach. Engineering Geology, 123(1–2), 60–71.

    Article  Google Scholar 

  • Li, T., Schuster, R. L., & Wu, J. (1986). Landslide dams in south-central China. In Landslide dams: Processes, risk, and mitigation (pp. 146-162). ASCE.

  • Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International journal of Remote sensing, 28(5), 823–870.

    Article  Google Scholar 

  • Lu, P., Stumpf, A., Kerle, N., & Casagli, N. (2011). Object-oriented change detection for landslide rapid mapping. IEEE Geoscience and remote sensing letters, 8(4), 701–705.

    Article  Google Scholar 

  • Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M. E., García-Santos, G., Fernandes, R., & Berger, M. (2012). Sentinels for science: Potential of Sentinel-1, -2, and-3 missions for scientific observations of ocean, cryosphere, and land. Remote Sensing of environment, 120, 91–101.

    Article  Google Scholar 

  • Manglik, A., Kumar, G. P., & Thiagarajan, S. (2013). Transverse tectonics in the Sikkim Himalaya: A magnetotelluric study. Tectonophysics, 589, 142–150.

    Article  Google Scholar 

  • Mantovani, F., Soeters, R., & Van Westen, C. J. (1996). Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology, 15(3–4), 213–225.

    Article  Google Scholar 

  • Mantovani, M., Devoto, S., Piacentini, D., Prampolini, M., Soldati, M., & Pasuto, A. (2016). Advanced SAR interferometric analysis to support geomorphological interpretation of slow-moving coastal landslides (Malta, Mediterranean Sea). Remote Sensing, 8(6), 443.

    Article  Google Scholar 

  • Martha, T. R., Kerle, N., Jetten, V., van Westen, C. J., & Kumar, K. V. (2010). Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology, 116(1–2), 24–36.

    Article  Google Scholar 

  • Martha, T. R., Roy, P., Govindharaj, K. B., Kumar, K. V., Diwakar, P. G., & Dadhwal, V. K. (2015). Landslides triggered by the June 2013 extreme rainfall event in parts of Uttarakhand state. India. Landslides, 12(1), 135–146.

    Article  Google Scholar 

  • Martha, T. R., Reddy, P. S., Bhatt, C. M., Raj, K. B. G., Nalini, J., Padmanabha, E. A., & Dadhwal, V. K. (2017a). Debris volume estimation and monitoring of Phuktal river landslide-dammed lake in the Zanskar Himalayas, India using Cartosat-2 images. Landslides, 14(1), 373–383.

    Article  Google Scholar 

  • Martha, T. R., Roy, P., & Kumar, K. V. (2017b). Assessment of the valley-blocking ‘So Bhir’ landslide near Mantam village, north Sikkim, India, using satellite images. Current Science, 113(7), 1228–1229.

    Google Scholar 

  • McColl, S. T. (2015). Landslide causes and triggers. In Landslide hazards, risks and disasters (pp. 17-42). Academic Press.

  • Mondini, A. C. (2017). Measures of spatial autocorrelation changes in multitemporal SAR images for event landslides detection. Remote Sensing, 9(6), 554.

    Article  Google Scholar 

  • Mondini, A. C., Guzzetti, F., Reichenbach, P., Rossi, M., Cardinali, M., & Ardizzone, F. (2011). Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote Sensing of Environment, 115(7), 1743–1757.

    Article  Google Scholar 

  • Mondini, A. C., Santangelo, M., Rocchetti, M., Rossetto, E., Manconi, A., & Monserrat, O. (2019). Sentinel-1 SAR amplitude imagery for rapid landslide detection. Remote Sensing, 11(7), 760.

    Article  Google Scholar 

  • Ni, J., & Barazangi, M. (1984). Seismotectonics of the Himalayan collision zone: Geometry of the underthrusting Indian plate beneath the Himalaya. Journal of Geophysical Research: Solid Earth, 89(B2), 1147–1163.

    Article  Google Scholar 

  • Nicoletti, P. G., & Parise, M. (2002). Seven landslide dams of old seismic origin in southeastern Sicily (Italy). Geomorphology, 46(3–4), 203–222.

    Article  Google Scholar 

  • Peng, M., Zhang, L. M., Chang, D. S., & Shi, Z. M. (2014). Engineering risk mitigation measures for the landslide dams induced by the 2008 Wenchuan earthquake. Engineering geology, 180, 68–84.

    Article  Google Scholar 

  • Petley, D. N., Hearn, G. J., Hart, A., Rosser, N. J., Dunning, S. A., Oven, K., & Mitchell, W. A. (2007). Trends in landslide occurrence in Nepal. Natural hazards, 43(1), 23–44.

    Article  Google Scholar 

  • Piacentini, D., Devoto, S., Mantovani, M., Pasuto, A., Prampolini, M., & Soldati, M. (2015). Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI): An example from the northwestern coast of Malta. Natural Hazards, 78(1), 681–697.

    Article  Google Scholar 

  • Raj, K. B. G., Martha, T. R., & Kumar, K. V. (2017). A bird’s-eye view of landslide dammed lakes in Zanskar Himalaya. India. Current Science, 112(6), 1109–1112.

    Google Scholar 

  • Raspini, F., Ciampalini, A., Del Conte, S., Lombardi, L., Nocentini, M., Gigli, G., & Casagli, N. (2015). Exploitation of amplitude and phase of satellite SAR images for landslide mapping: The case of Montescaglioso (South Italy). Remote Sensing, 7(11), 14576–14596.

    Article  Google Scholar 

  • Ruiz-Villanueva, V., Allen, S., Arora, M., Goel, N. K., & Stoffel, M. (2017). Recent catastrophic landslide lake outburst floods in the Himalayan mountain range. Progress in Physical Geography, 41(1), 3–28.

    Article  Google Scholar 

  • Schneider, J. F., Gruber, F. E., & Mergili, M. (2013). Recent cases and geomorphic evidence of landslide-dammed lakes and related hazards in the mountains of Central Asia. In Landslide science and practice (pp. 57-64). Springer, Berlin, Heidelberg.

  • Schneider, J. L., Pollet, N., Chapron, E., Wessels, M., & Wassmer, P. (2004). Signature of Rhine Valley sturzstrom dam failures in Holocene sediments of Lake Constance. Germany. Sedimentary Geology, 169(1–2), 75–91.

    Article  Google Scholar 

  • Seeber, L., Armbruster, J. G., & Quittmeyer, R. C. (1981). Seismicity and continental subduction in the Himalayan arc. Zagros Hindu Kush Himalaya Geodynamic Evolution, 3, 215–242.

    Article  Google Scholar 

  • Sengupta, A., Gupta, S., & Anbarasu, K. (2010). Rainfall thresholds for the initiation of landslide at Lanta Khola in north Sikkim. India. Natural hazards, 52(1), 31–42.

    Article  Google Scholar 

  • Sharafi, S., Yamani, M., & Ehteshami-Moinabadi, M. (2019). Evidence of the formation of landslide-dammed lakes in the Zagros Mountains range. Iran. Journal of Mountain Science, 16(10), 2389–2403.

    Article  Google Scholar 

  • Singh, L. P., Van Westen, C. J., Ray, P. C., & Pasquali, P. (2005). Accuracy assessment of InSAR derived input maps for landslide susceptibility analysis: A case study from the Swiss Alps. Landslides, 2(3), 221–228.

    Article  Google Scholar 

  • Sivasankar, T., Lone, J. M., Sarma, K. K., Qadir, A., & Raju, P. L. N. (2019). Estimation of above ground biomass using support vector. Vietnam Journal of Earth Sciences, 41(2), 95–104.

    Article  Google Scholar 

  • Standard, I. (2014). Indian standard criteria for earthquake resistant design of structures.

  • Strozzi, T., Klimeš, J., Frey, H., Caduff, R., Huggel, C., Wegmüller, U., & Rapre, A. C. (2018). Satellite SAR interferometry for the improved assessment of the state of activity of landslides: A case study from the Cordilleras of Peru. Remote sensing of environment, 217, 111–125.

    Article  Google Scholar 

  • Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., & Hsu, K. L. (2018). A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Reviews of Geophysics, 56(1), 79–107.

    Article  Google Scholar 

  • Takahashi, K., Mecatti, D., Dei, D., Matsumoto, M., & Sato, M. (2012, July). Landslide observation by ground-based SAR interferometry. In 2012 IEEE International Geoscience and Remote Sensing Symposium (pp. 6887-6890). IEEE.

  • Tantianuparp, P., Shi, X., Zhang, L., Balz, T., & Liao, M. (2013). Characterization of landslide deformations in Three Gorges area using multiple InSAR data stacks. Remote Sensing, 5(6), 2704–2719.

    Article  Google Scholar 

  • Tarchi, D., Casagli, N., Fanti, R., Leva, D. D., Luzi, G., Pasuto, A., & Silvano, S. (2003). Landslide monitoring by using ground-based SAR interferometry: An example of application to the Tessina landslide in Italy. Engineering geology, 68(1–2), 15–30.

    Article  Google Scholar 

  • Thakur, V. C., Mahajan, A. K., & Gupta, V. (2012). Seismotectonics of 18 September 2011 Sikkim earthquake: A component of transcurrent deformation in eastern Himalaya. Himalayan Geol., 33(1), 89–96.

    Google Scholar 

  • Tiwari, V. M., Rao, M. V., Mishra, D. C., & Singh, B. (2006). Crustal structure across Sikkim, NE Himalaya from new gravity and magnetic data. Earth and Planetary Science Letters, 247(1–2), 61–69.

    Article  CAS  Google Scholar 

  • Uemoto, J., Moriyama, T., Nadai, A., Kojima, S., & Umehara, T. (2019). Landslide detection based on height and amplitude differences using pre-and post-event airborne X-band SAR data. Natural Hazards, 95(3), 485–503.

    Article  Google Scholar 

  • Van der Meer, F. D., Van der Werff, H. M. A., & Van Ruitenbeek, F. J. A. (2014). Potential of ESA’s Sentinel-2 for geological applications. Remote sensing of environment, 148, 124–133.

    Article  Google Scholar 

  • Van Westen C (2000). Remote sensing for natural disaster management. International archives of photogrammetry and remote sensing, 33(B7/4; PART 7):1609-1617.

  • Wang, L., & Qu, J. J. (2007). NMDI: A normalized multi‐band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophysical Research Letters34(20).

  • Wasowski, J., Bovenga, F., Dijkstra, T., Meng, X., Nutricato, R., & Chiaradia, M. T. (2014). Persistent scatterers interferometry provides insight on slope deformations and landslide activity in the mountains of Zhouqu, Gansu, China. In Landslide science for a safer geoenvironment (pp. 359-364). Springer, Cham.

  • Weidinger, J. T. (2006). Landslide dams in the high mountains of India, Nepal and China-stability and life span of their dammed lakes. Italian Journal of Engineering Geology and Environment, 1, 67–80.

    Google Scholar 

  • Weirich, F., & Blesius, L. (2007). Comparison of satellite and air photo based landslide susceptibility maps. Geomorphology, 87(4), 352–364.

    Article  Google Scholar 

  • Yun, S. H., Hudnut, K., Owen, S., Webb, F., Simons, M., Sacco, P., ... & Coletta, A. (2015). Rapid damage mapping for the 2015 M w 7.8 Gorkha earthquake using synthetic aperture radar data from COSMO–SkyMed and ALOS-2 Satellites. Seismological Research Letters86(6), 1549-1556.

  • Zhang, L. M., Zhang, S., & Huang, R. Q. (2014). Multi-hazard scenarios and consequences in Beichuan, China: The first five years after the 2008 Wenchuan earthquake. Engineering geology, 180, 4–20.

    Article  Google Scholar 

  • Zhang, Y., Zhao, X., Lan, H., & Xiong, T. (2011). A Pleistocene landslide-dammed lake, Jinsha River, Yunnan. China. Quaternary International, 233(1), 72–80.

    Article  Google Scholar 

  • Zhao, C., Lu, Z., Zhang, Q., & de La Fuente, J. (2012). Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sensing of Environment, 124, 348–359.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge European Space Agency (ESA) for Sentinel-1 SAR and Sentinel-2 optical data provision free of cost. We also gratefully acknowledge Google LLC for offering the Google Earth Engine platform. We would also like to thank Google Inc. for providing Google Earth Pro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swakangkha Ghosh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivasankar, T., Ghosh, S. & Joshi, M. Exploitation of optical and SAR amplitude imagery for landslide identification: a case study from Sikkim, Northeast India. Environ Monit Assess 193, 386 (2021). https://doi.org/10.1007/s10661-021-09119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09119-6

Keywords

Navigation