Skip to main content
Log in

Occurrence and environmental risks of nonsteroidal anti-inflammatory drugs in urban wastewater in the southwest monsoon region of India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

A Commentary to this article was published on 01 September 2020

A Correction to this article was published on 22 August 2020

This article has been updated

Abstract

Municipal wastewater treatment plants (MWWTPs) are considered to reduce the amount of pollutants that enter water reservoirs as a result of wastewater disposal. An assessment of the occurrence and removal of pharmaceutical compounds, mainly nonsteroidal anti-inflammatory drugs (NSAIDs), in wastewater from the Kavoor MWWTP (southwest monsoon region), India, is presented in this paper. The performance of the MWWTP was monitored in the summer (May) and monsoon (September) periods. The highest inlet concentrations of diclofenac, naproxen, ibuprofen, ketoprofen, and acetylsalicylic acid in the wastewater were observed in May and were 721.37, 2132.48, 2109.875, 2747.29, and 2213.36 μg/L, respectively. The ketoprofen content was found to be higher than that of other NSAIDs in the influent in both seasons, whereas the diclofenac content was found to be the lowest. The removal efficiency (RE) of the target NSAIDs in the Kavoor secondary treatment plant varied from 81.82–98.92% during the summer season. During the monsoon season, the influent NSAID concentration level dropped, probably because of infiltration in old sewer pipes. In addition, a 100% RE was achieved for all the target NSAIDs in the wastewater of the MWWTP. The results showed that secondary treatment plants have the potential to remove NSAID compounds from municipal sewage with consistent performance. The environmental hazards caused by the accumulation of such compounds in water reservoirs are due to open discharge. The environmental risk levels of these compounds were also studied by the environmental risk assessment (ERA) using the European Agency for Evaluation of Medicines approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 22 August 2020

    The original version of this article is unfortunately published online with missing acknowledgment section.

References

  • Anh, D. V. H., Minh, B. Q., & Nhat, P. H. (2014). Environmental risks of some nonsteroidal anti-inflammatory drugs ( NSAIDs ) in surface water in Ho Chi Minh City. In 3rd World Conference on Applied Sciences, Engineering & Technology (pp. 724–727).

  • Balakrishna, K., Rath, A., Praveenkumarreddy, Y., Siri, K. G., & Subedi, B. (2017). A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicology and Environmental Safety, 137, 113–120. https://doi.org/10.1016/j.ecoenv.2016.11.014.

    Article  CAS  Google Scholar 

  • Cardoso, O., Porcher, J.-M., & Sanchez, W. (2014). Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: Review of evidence and need for knowledge. Chemosphere, 115, 20–30. https://doi.org/10.1016/j.chemosphere.2014.02.004.

    Article  CAS  Google Scholar 

  • Chandramouli, C. (2011). Census of India 2011 Karnataka. In District census handbook (Vol. 30).

    Google Scholar 

  • Cleuvers, M. (2004). Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicology and Environmental Safety, 59, 309–315. https://doi.org/10.1016/S0147-6513(03)00141-6.

    Article  CAS  Google Scholar 

  • Directorate of Economics and Statistics. (2018). Annual seasonal rainfall & area coverage during 2017 in Karnataka, Doc. Ref.: DES/10/2018.

  • Dökmeci, A. H., Dökmeci, I., & Ibar, H. (2014). The determination of single and mixture toxicity at high concentrations of some acidic pharmaceuticals via Aliivibrio fischeri. Environmental Processes, 1, 95–103. https://doi.org/10.1007/s40710-014-0009-7.

    Article  Google Scholar 

  • Ekpeghere, K. I., Lee, J., Kim, H., Shin, S., & Oh, J. (2016). Determination and characterization of pharmaceuticals in sludge from municipal and livestock wastewater treatment plants. Chemosphere, 168(2), 1211–1221. https://doi.org/10.1016/j.chemosphere.2016.10.077.

    Article  CAS  Google Scholar 

  • Committee For Medicinal Products For Human Use (CHMP) Guideline on the environmental risk assessment of medicinal products for human use, Doc. Ref.: EMEA/CHMP/SWP/4447/00 corr 1, London, 01 June, 2006

  • Feng, L., Van Hullebusch, E. D., Rodrigo, M. A., Esposito, G., & Oturan, M. A. (2013). Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chemical Engineering Journal, 228, 944–964. https://doi.org/10.1016/j.cej.2013.05.061.

    Article  CAS  Google Scholar 

  • Gamarra Jr., J. S., Godoi, A. F. L., De Vasconcelos, E. C., De Souza, K. M. T., & De Oliveira, C. M. R. (2015). Environmental risk assessment (ERA) of diclofenac and ibuprofen: a public health perspective. Chemosphere, 120, 462–469. https://doi.org/10.1016/j.chemosphere.2014.08.020.

    Article  CAS  Google Scholar 

  • Gracia-Lor, E., Martinez, M., Sancho, J. V., Penuela, G., & Hernandez, F. (2012). Multi-class determination of personal care products and pharmaceuticals in environmental and wastewater samples by ultra-high performance liquid-chromatography-tandem mass spectrometry. Talanta, 99, 1011–1023. https://doi.org/10.1016/j.talanta.2012.07.091.

    Article  CAS  Google Scholar 

  • Gulkowska, A., Leung, H. w., So, M. K., Taniyasu, S., Yamashita, N., Yeung, L. W. Y., et al. (2008). Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen , China. Water Research, 42, 395–403. https://doi.org/10.1016/j.watres.2007.07.031.

    Article  CAS  Google Scholar 

  • Hashim, N. H., & Khan, S. J. (2011). Enantioselective analysis of ibuprofen , ketoprofen and naproxen in wastewater and environmental water samples. Journal of Chromatography A, 1218(29), 4746–4754. https://doi.org/10.1016/j.chroma.2011.05.046.

    Article  CAS  Google Scholar 

  • Idder, S., Ley, L., Mazellier, P., & Budzinski, H. (2013). Quantitative on-line preconcentration-liquid chromatography coupled with tandem mass spectrometry method for the determination of pharmaceutical compounds in water. Analytica Chimica Acta, 805, 107–115. https://doi.org/10.1016/j.aca.2013.10.041.

    Article  CAS  Google Scholar 

  • Kermia, A. E. B., Fouial-djebbar, D., & Trari, M. (2016). Occurrence, fate and removal efficiencies of pharmaceuticals in wastewater treatment plants (WWTPs) discharging in the coastal environment of Algiers. Comptes Rendus Chimie, 19(8), 963–970. https://doi.org/10.1016/j.crci.2016.05.005.

    Article  CAS  Google Scholar 

  • Khamis, M., Karaman, R., Ayyash, F., Qtait, A., Deeb, O., & Manssra, A. (2011). Efficiency of advanced membrane wastewater treatment plant towards removal of aspirin, salicylic acid, paracetamol and p -aminophenol. Journal of Environmental Science & Engineering, 5, 121–137.

    CAS  Google Scholar 

  • Kosjek, T., Heath, E., & Kompare, B. (2007). Removal of pharmaceutical residues in a pilot wastewater treatment plant. Analytical and Bioanalytical Chemistry, 387(4), 1379–1387. https://doi.org/10.1007/s00216-006-0969-1.

    Article  CAS  Google Scholar 

  • Kosma, C. I., Lambropoulou, D. A., & Albanis, T. A. (2010). Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. Journal of Hazardous Materials, 179, 804–817. https://doi.org/10.1016/j.jhazmat.2010.03.075.

    Article  CAS  Google Scholar 

  • Langenhoff, A., Inderfurth, N., Veuskens, T., Schraa, G., Blokland, M., Kujawa-roeleveld, K., & Rijnaarts, H. (2013, 2013). Microbial removal of the pharmaceutical compounds Ibuprofen and Diclofenac from wastewater. BioMed Research International, 1–9.

  • Larsson, E., Rabayah, A., & Jönsson, J. Å. (2013). Sludge removal of nonsteroidal anti-inflammatory drugs during wastewater treatment studied by direct hollow fiber liquid phase microextraction. Journal of Environmental Protection, 4, 946–955.

    Article  Google Scholar 

  • Li, B., Zhang, T., Xu, Z., & Herbert, H. P. F. (2009). Rapid analysis of 21 antibiotics of multiple classes in municipal wastewater using ultra performance liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta, 645, 64–72. https://doi.org/10.1016/j.aca.2009.04.042.

    Article  CAS  Google Scholar 

  • Lin, A. Y., Yu, T., & Lateef, S. K. (2009). Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. Journal of Hazardous Materials, 167, 1163–1169. https://doi.org/10.1016/j.jhazmat.2009.01.108.

    Article  CAS  Google Scholar 

  • Lindholm-Lehto, P. C., Ahkola, H. S. J., Knuutinen, J. S., & Herve, S. H. (2016). Widespread occurrence and seasonal variation of pharmaceuticals in surface waters and municipal wastewater treatment plants in Central Finland. Environmental Science and Pollution Research, 23(8), 7985–7997. https://doi.org/10.1007/s11356-015-5997-y.

    Article  CAS  Google Scholar 

  • Loraine, G. A., & Pettigrove, M. E. (2006). Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in Southern California. Environmental Science & Technology, 40, 687–695.

    Article  CAS  Google Scholar 

  • Lu, M.-C., Chen, Y. Y., Chiou, M.-R., Chen, M. Y., & Fan, H.-J. (2016). Occurrence and treatment efficiency of pharmaceuticals in landfill leachates. Waste Management, 55, 257–264. https://doi.org/10.1016/j.wasman.2016.03.029.

    Article  CAS  Google Scholar 

  • Madikizela, L. M., & Chimuka, L. (2017a). Occurrence of naproxen, ibuprofen, and diclofenac residues in wastewater and river water of KwaZulu-Natal Province in South Africa. Environmental Monitoring and Assessment, 189, 348. https://doi.org/10.1007/s10661-017-6069-1.

    Article  CAS  Google Scholar 

  • Madikizela, L. M., & Chimuka, L. (2017b). Simultaneous determination of naproxen, ibuprofen and diclofenac in wastewater using solid-phase extraction with high performance liquid chromatography. Water SA, 43(2), 264–274. https://doi.org/10.4314/wsa.v43i2.10.

    Article  CAS  Google Scholar 

  • Madikizela, L. M., Muthwa, S. F., & Chimuka, L. (2014). Determination of triclosan and ketoprofen in river water and wastewater by solid phase extraction and high performance liquid chromatography. South African Journal of Chemistry, 67, 143–150.

    Google Scholar 

  • Madikizela, L. M., Mdluli, P. S., & Chimuka, L. (2017). An initial assessment of naproxen, ibuprofen and diclofenac in Ladysmith water resources in South Africa using molecularly imprinted solid-phase extraction followed by high performance liquid chromatography-photodiode array detection. South African Journal of Chemistry, 70, 145–153. https://doi.org/10.17159/0379-4350/2017/v70a21.

    Article  CAS  Google Scholar 

  • Mandaric, L., Diamantini, E., Stella, E., Cano-Paoli, K., Valle-Sistac, J., Molins-Delgado, D., et al. (2017). Contamination sources and distribution patterns of pharmaceuticals and personal care products in Alpine rivers strongly affected by tourism. Science of the Total Environment, 590–591(07), 484–494. https://doi.org/10.1016/j.scitotenv.2017.02.185.

    Article  CAS  Google Scholar 

  • Martín, J., Camacho-mu, D., Santos, J. L., Aparicio, I., & Alonso, E. (2012). Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants : Removal and ecotoxicological impact of wastewater discharges and sludge disposal. Journal of Hazardous Materials, 239–240, 40–47. https://doi.org/10.1016/j.jhazmat.2012.04.068.

    Article  CAS  Google Scholar 

  • Martínez-Alcalá, I., Guillén-Navarro, J. M., & Fernández-lópez, C. (2017). Pharmaceutical biological degradation , sorption and mass balance determination in a conventional activated-sludge wastewater treatment plant from Murcia , Spain. Chemical Engineering Journal, 316, 332–340. https://doi.org/10.1016/j.cej.2017.01.048.

    Article  CAS  Google Scholar 

  • Mlunguza, N. Y., Ncube, S., Mahlambi, P. N., Chimuka, L., & Madikizela, L. M. (2019). Adsorbents and removal strategies of non-steroidal anti-inflammatory drugs from contaminated water bodies. Journal of Environmental Chemical Engineering, 7(3), 103142. https://doi.org/10.1016/j.jece.2019.103142.

    Article  CAS  Google Scholar 

  • Modi, C. M., Mody, S. K., Patel, H. B., Dudhatra, G. B., Kumar, A., & Avale, M. (2012). Toxicopathological overview of analgesic and anti-inflammatory drugs in animals. Journal of Applied Pharmaceutical Science, 2(1), 149–157.

    Google Scholar 

  • Nakada, N., Komori, K., & Suzuki, Y. (2005). Occurrence and fate of anti-inflammatory drugs in wastewater treatment plants in Japan. Environmental Sciences, 12(6), 359–369.

    CAS  Google Scholar 

  • Oaks, J. L., Gilbert, M., Virani, M. Z., Watson, R. T., Meteyer, C. U., Rideout, B. A., et al. (2004). Diclofenac residues as the cause of vulture population decline in Pakistan. Letters to Nature, 427(02), 630–633.

    Article  CAS  Google Scholar 

  • Petrovic, M., Lopez De Alda, M. J., Diaz-Cruz, S., Postigo, C., Radjenovic, J., Gros, M., & Barcelo, D. (2009). Fate and removal of pharmaceuticals and illicit drugs in conventional and membrane bioreactor wastewater treatment plants and by riverbank filtration. Philosophical Transactions of the Royal Society A, 367, 3979–4003. https://doi.org/10.1098/rsta.2009.0105.

    Article  CAS  Google Scholar 

  • Praskova, E., Sevcikova, M., Živná, D., Štěpánová, S., Ševčíková, M., Blahová, J., et al. (2012). Acute toxicity of acetylsalicylic acid to juvenile and embryonic stages of Danio rerio and embryonic stages of Danio rerio. Neuroendocrinology Letters, 33(3), 71–76.

    Google Scholar 

  • Praskova, E., Plhalova, L., Chromcova, L., Stepanova, S., Bedanova, I., Blahova, J., et al. (2014). Effects of subchronic exposure of diclofenac on growth, histopathological changes, and oxidative stress in zebrafish (Danio rerio). The Scientific World Journal, 2014, 1–5.

    Article  Google Scholar 

  • Samaras, V. G., Stasinakis, A. S., Mamais, D., Thomaidis, N. S., & Lekkas, T. D. (2013). Fate of selected pharmaceuticals and synthetic endocrine disrupting compounds during wastewater treatment and sludge anaerobic digestion. Journal of Hazardous Materials, 244–245, 259–267. https://doi.org/10.1016/j.jhazmat.2012.11.039.

    Article  CAS  Google Scholar 

  • Sanderson, H., Johnson, D. J., Wilson, C. J., Brain, R. A., & Solomon, K. R. (2003). Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicology Letters, 144(3), 383–395. https://doi.org/10.1016/S0378-4274(03)00257-1.

    Article  CAS  Google Scholar 

  • Shanmugam, G., Sampath, S., Selvaraj, K. K., Larsson, D. G. J., & Ramaswamy, B. R. (2014). Non-steroidal anti-inflammatory drugs in Indian rivers. Environmental Science and Pollution Research, 21, 921–931. https://doi.org/10.1007/s11356-013-1957-6.

    Article  CAS  Google Scholar 

  • Sharma, K., & Kaushik, G. (2017). NSAIDS in the environment : From emerging problem to green solution. Annals of Pharmacology and Pharmaceutics, 2(14), 1–3.

    CAS  Google Scholar 

  • Sim, W., Lee, J., & Oh, J. (2010). Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea. Environmental Pollution, 158, 1938–1947. https://doi.org/10.1016/j.envpol.2009.10.036.

    Article  CAS  Google Scholar 

  • Sim, W., Lee, J., Lee, E., Shin, S., Hwang, S., & Oh, J. (2011). Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere, 82(2), 179–186. https://doi.org/10.1016/j.chemosphere.2010.10.026.

    Article  CAS  Google Scholar 

  • Singh, K. P., Rai, P., Singh, A. K., Verma, P., & Gupta, S. (2014). Occurrence of pharmaceuticals in urban wastewater of north Indian cities and risk assessment. Environmental Monitoring and Assessment, 186(10), 6663–6682. https://doi.org/10.1007/s10661-014-3881-8.

    Article  CAS  Google Scholar 

  • Sun, Q., Lv, M., Hu, A., Yang, X., & Yu, C. (2013). Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in a wastewater treatment plant in Xiamen, China. Journal of Hazardous Materials, 227, 69–75. https://doi.org/10.1016/j.jhazmat.2013.11.056.

    Article  CAS  Google Scholar 

  • Szymonik, A., Lach, J., & Malińska, K. (2017). Fate and removal of pharmaceuticals and illegal drugs present in drinking water and wastewater. Ecological Chemistry and Engineering, 24(1), 65–85. https://doi.org/10.1515/eces-2017-0006.

    Article  CAS  Google Scholar 

  • Tewari, S., Jindal, R., Kho, Y. L., Eo, S., & Choi, K. (2013). Major pharmaceutical residues in wastewater treatment plants and receiving waters in Bangkok, Thailand, and associated ecological risks. Chemosphere, 91(5), 697–704. https://doi.org/10.1016/j.chemosphere.2012.12.042.

    Article  CAS  Google Scholar 

  • Vieno, N., & Sillanpää, M. (2014). Fate of diclofenac in municipal wastewater treatment plant - a review. Environment International, 69, 28–39. https://doi.org/10.1016/j.envint.2014.03.021.

    Article  CAS  Google Scholar 

  • Xu, J., Wu, L., & Chang, A. C. (2017). Degradation and adsorption of selected pharmaceuticals and personal care products ( PPCPs ) in agricultural soils. Chemosphere, 2009, 1299–1305. https://doi.org/10.1016/j.chemosphere.2009.09.063.

    Article  CAS  Google Scholar 

  • Yuan, X., Qiang, Z., Ben, W., Zhu, B., & Qu, J. (2015). Distribution, mass load and environmental impact of multiple-class pharmaceuticals in conventional and upgraded municipal wastewater treatment plants in East China. Environmental Science: Processes & Impacts, 17(3), 596–605. https://doi.org/10.1039/C4EM00596A.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhang, D., Lin, L., & Yan, C. (2013). Occurrence and risks of pharmaceuticals, personal care products and endocrine disruptors in Jiulongjiang river, South China. In 13th International Conference of Environmental Science and Technology Athens, Greece (pp. 1–7).

  • Zunngu, S. S., Madikizela, L. M., Chimuka, L., & Mdluli, P. S. (2017). Synthesis and application of a molecularly imprinted polymer in the solid-phase extraction of ketoprofen from wastewater. Comptes Rendus Chimie, 20(5), 585–591. https://doi.org/10.1016/j.crci.2016.09.006.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Thalla.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thalla, A.K., Vannarath, A.S. Occurrence and environmental risks of nonsteroidal anti-inflammatory drugs in urban wastewater in the southwest monsoon region of India. Environ Monit Assess 192, 193 (2020). https://doi.org/10.1007/s10661-020-8161-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8161-1

Keywords

Navigation