Skip to main content
Log in

Dynamics of (total and methyl) mercury in sediment, fish, and crocodiles in an Amazonian Lake and risk assessment of fish consumption to the local population

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Increasing concerns have been raised about the toxicity of mercury (Hg) to humans, especially for those that consume a great amount of fish. High Hg concentrations have previously been measured in Amazonian waterbodies, both resulting from natural and anthropogenic sources. However, few studies have been conducted so far in Amazonian lakes that are fished by local populations. In addition, few of those studies included methylmercury (MeHg), the most toxic and bioaccumulative Hg form, and evaluated the influence of physico-chemical conditions and season on Hg dynamics. In the present study, total Hg (THg) and MeHg concentrations were measured in bottom sediment as well as in two fish and two crocodile species of the Amazonian Cuniã Lake. Bottom sediment MeHg concentrations were higher in the dry season than in the wet season, which is related to differences in physico-chemical (pH and electrical conductivity) conditions. Diet appeared to be related with animal tissue MeHg concentrations, with the herbivorous fish having lower MeHg levels than the predatory fish and crocodiles. Based on the measured tissue concentrations and published data on local person weight and fish consumption, MeHg risk to Cuniã Lake populations was estimated. Although the MeHg fish tissue concentrations did not exceed national and international standards, a significant risk to the local population is anticipated due to their high fish consumption rates.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ANVISA, 2013. Resolução RDC N° 42, de 29 de agosto de 2013 - Dispõe sobre o Regulamento Técnico MERCOSUL sobre Limites Máximos de Contaminantes Inorgânicos em Alimentos. Agência Nacional de Vigilância Sanitária, Ministério da Saúde. p. 17.

  • Azevedo, L. S., Pestana, I. A., da Costa Nery, A. F., Bastos, W. R., & Souza, C. M. M. (2019). Variation in Hg accumulation between demersal and pelagic fish from Puruzinho Lake, Brazilian Amazon. Ecotoxicology, 28(10), 1143–1149.

  • Bastos, W. R., Malm, O., Pfeiffer, W. C., & Cleary, D. (1998). Establishment and analytical quality control of laboratories for Hg determination in biological and geological samples in the Amazon. Brazil Ciência Cultura, 50, 255–260.

    CAS  Google Scholar 

  • Bastos, W. R., Gomes, J. P. O., Oliveira, R. C., Almeida, R., Nascimento, E. L., Bernardi, J. V. E., & Pfeiffer, W. C. (2006). Mercury in the environment and riverside population in the Madeira River Basin, Amazon, Brazil. Science of the Total Environment, 368, 344–351.

    CAS  Google Scholar 

  • Bastos, W. R., Rebelo, M. D. F., Fonseca, M. D. F., Almeida, R. D., & Malm, O. (2008). A description of mercury in fishes from the Madeira River Basin, Amazon, Brazil. Acta Amazonica, 38(3), 431–438.

    CAS  Google Scholar 

  • Bastos, W. R., Dórea, J. G., Bernardi, J. V. E., Lauthartte, L. C., Mussy, M. H., Lacerda, L. D., & Malm, O. (2015). Mercury in fish of the Madeira river (temporal and spatial assessment), Brazilian Amazon. Environmental Research, 140, 191–197.

    CAS  Google Scholar 

  • Bastos, W. R., Dórea, J. G., Bernardi, J. V. E., Manzatto, A. G., Mussy, M. H., Lauthartte, L. C., & Malm, O. (2016). Sex-related mercury bioaccumulation in fish from the Madeira River, Amazon. Environmental Research, 144, 73–80.

    CAS  Google Scholar 

  • Bozelli, R.L., (2000). Lago Batata: impacto e recuperação de um ecossistema amazônico. Doctoral thesis Universidade Federal.

  • Brito, B. C., Forsberg, B. R., Kasper, D., Amaral, J. H., de Vasconcelos, M. R., de Sousa, O. P., & Bastos, W. R. (2017). The influence of inundation and lake morphometry on the dynamics of mercury in the water and plankton in an Amazon floodplain lake. Hydrobiologia, 790, 35–48.

    CAS  Google Scholar 

  • Callisto, M., & Esteves, F. A. (1998). Biomonitoramento da macrofauna bentônica de Chironomidae (Diptera) em dois igarapés amazônicos sob influência das atividades de uma mineração de bauxita. Oecologia Brasiliensis, 5(1), 20.

    Google Scholar 

  • Carvalho, L. V. B., Hacon, S. S., Vega, C. M., Vieira, J. A., Larentis, A. L., Mattos, R. C. O. C., Valente, D., Costa-Amaral, I. C., Mourão, D. S., Silva, G. P., Beatriz, F. A., & Oliveira, B. F. A. (2019). Oxidative stress levels induced by mercury exposure in Amazon juvenile populations in Brazil. International Journal of Environmental Research and Public Health, 16, 2682.

    CAS  Google Scholar 

  • Cerdeira, R. G. P., Ruffino, M. L., & Isaac, V. J. (1997). Consumo de pescado e outros alimentos pela população ribeirinha do Lago Grande de Monte Alegre, PA-Brasil. Acta Amazônica, 27, 213–228.

    Google Scholar 

  • Donkor, A. K., Bonzongo, J. C., Nartey, V. K., & Adotey, D. K. (2006). Mercury in different environmental compartments of the Pra River Basin, Ghana. Science of the Total Environment, 368, 164–176.

    CAS  Google Scholar 

  • Dorea, J. G., Barbosa, A. C., & Silva, G. S. (2006). Fish mercury bioaccumulation as a function of feeding behavior and hydrological cycles of the Rio Negro, Amazon. Comparative Biochemistry and Physiology, Part C, 142, 275–283.

    Google Scholar 

  • EC. (2006). Commission Regulation (EC) no 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union L, 364, 5–24.

    Google Scholar 

  • EFSA. (2004). Opinion of the scientific panel on contaminants in the food chain on a request from the Commission related to mercury and methylmercury in food. EFSA Journal, 34, 1–14.

    Google Scholar 

  • EFSA. (2015). Scientific Opinion. Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA Journal, 13, 3982.

    Google Scholar 

  • Esteves, F. A., & Marinho, C. C. (2011). Carbono inorgânico. In Fundamentos de limnologia (3rd ed., p. 790). Rio de Janeiro: Interciência.

    Google Scholar 

  • EU. (2008). Directive 2008/105/EC of the European Parliament and the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Official Journal of the European Union L, 348, 84–97.

    Google Scholar 

  • FAO/WHO. (2011). Report of the joint FAO/WHO expert consultation on the risks and benefits of fish consumption. In Rome, food and agriculture organization of the united nations (p. 50). Geneva: World Health Organization.

    Google Scholar 

  • Gammons, C. H., Slotton, D. G., Gerbrandt, B., Weight, W., Young, C. A., McNearny, R. L., Cámac, E., Calderón, R., & Tapia, H. (2006). Mercury concentrations of fish, river water, and sediment in the Rıo Ramis-Lake Titicaca watershed, Peru. Science of the Total Environment, 368, 637–648.

    CAS  Google Scholar 

  • Gerson, J. R., Driscoll, C. T., Hsu-Kim, H., & Bernhardt, E. S. (2018). Senegalese artisanal gold mining leads to elevated total mercury and methylmercury concentrations in soils, sediments, and rivers. Science of the Anthropocene, 6, 11.

    Google Scholar 

  • Gilmour, C. C., & Henry, E. A. (1991). Mercury methylation in aquatic systems affected by acid deposition. Environmental Pollution, 71(2–4), 131–169.

    CAS  Google Scholar 

  • Golovanova, I. L., Komov, V. T., & Gremyatchikh, V. A. (2008). Hydrolysis of carbohydrates in roach (Rutilus rutilus (L.)) at different levels of mercury accumulation. Inland Water Biology, 1(3), 296.

  • Gomes, D. F., Sanches, N. A. O., Sahm, L. H., & Gorni, G. R. (2017). Aquatic oligochaeta (Annelida: Clitellata) in extractive reserve Lake Cuniã, Western Brazilian Amazon. Biota Neotropica, 17, 1.

    Google Scholar 

  • Goulding, M. (1999). Introduction. In C. Padoch, J. M. Ayres, M. Pinedo-Vazquez, & A. Henderson (Eds.), Várzea: Diversity, development, and the conservation of Amazonian’s white waters floodplain (pp. 3–6). Nova York: New York botanical garden press.

    Google Scholar 

  • Ha, E., Basu, N., Bose-O’Reilly, S., Dórea, J. G., McSorley, E., Sakamoto, M., & Chan, H. M. (2017). Current progress on understanding the impact of mercury on human health. Environmental Research, 152, 419–433.

    CAS  Google Scholar 

  • Hacon, S., Dórea, J., Fonseca, M., Oliveira, B., Mourão, D., Ruiz, C., & Bastos, W. (2014). The influence of changes in lifestyle and mercury exposure in riverine populations of the Madeira river (Amazon basin) near a hydroelectric project. Int. J. Environmental Research and Public Health, 11, 2437–2455.

    Google Scholar 

  • Harada, M. (1995). Minamata disease: Methylmercury poisoning in Japan caused by environmental pollution. Critical Reviews in Toxicology, 25, 1–24.

    CAS  Google Scholar 

  • Hylander, L. D., Pinto, F. N., Guimaraes, J. R., Meili, M., Oliveira, L. J., & Silva, E. D. C. (2000). Fish mercury concentration in the Alto Pantanal, Brazil: Influence of season and water parameters. Science of the Total Environment, 261, 9–20.

    CAS  Google Scholar 

  • Kehrig, H. A., Palermo, E. F., Seixas, T. G., Santos, H. S., Malm, O., & Akagi, H. (2009). Methyl and total mercury found in two man-made Amazonian reservoirs. Journal of the Brazilian Chemical Society, 20, 1142–1152.

    CAS  Google Scholar 

  • Kelly, C. A., Rudd, J. W., & Holoka, M. H. (2003). Effect of pH on mercury uptake by an aquatic bacterium: Implications for Hg cycling. Environmental Science & Technology, 37(13), 2941–2946.

    CAS  Google Scholar 

  • Kudo, A., & Miyahara, S. (1991). A case history; Minamata mercury pollution in Japan-from loss of human lives to decontamination. Water Science & Technology, 23, 283–290.

    CAS  Google Scholar 

  • Kudo, A., Fujikawa, Y., Miyahara, S., Zheng, J., Takigami, H., Sugahara, M., & Muramatsu, T. (1998). Lessons from Minamata mercury pollution, Japan after a continuous 22 years of observation. Water Science & Technology, 38, 187–193.

    CAS  Google Scholar 

  • Lima, C.S., (2018). Efeitos neuropsicológicos da exposição ao mercúrio em crianças e adolescentes da região do rio Madeira. Doctoral thesis Federal University of Bahia, Salvador, Brazil. p. 105.

  • Maitland, P. S. (1979). The distribution of zoobenthos and sediments in Loch Leven, Kinross, Scotland. Archiv für Hydrobiologie, 85, 98–125.

    Google Scholar 

  • Marrugo-Negrete, J., Durango-Hernández, J., Calao-Ramos, C., Urango-Cárdenas, I., & Díez, S. (2019). Mercury levels and genotoxic effect in caimans from tropical ecosystems impacted by gold mining. Science of the Total Environment, 664, 899–907.

    CAS  Google Scholar 

  • Mourão, D.S., (2016). Avaliação da exposição ao mercúrio em comunidades ribeirinhas de Porto Velho, Rondônia. Doctoral thesis Escola Nacional de Saúde Pública Sergio Arouca, Rio de Janeiro. p. 94.

  • Oliveira, R. C., Dórea, J. G., Bernardi, J. V., Bastos, W. R., Almeida, R., & Manzatto, Â. G. (2010). Fish consumption by traditional subsistence villagers of the Rio Madeira (Amazon): Impact on hair mercury. Annals of Human. Biology, 37, 629–642.

    Google Scholar 

  • Pedrosa, O.P., (2018). Estudo prospectivo do estado de saúde de uma população ribeirinha da Amazônia brasileira. Doctoral thesis Federal University of Rondônia, Porto Velho. pp. 137.

  • Pestana, I. A., Bastos, W. R., Almeida, M. G., de Carvalho, D. P., Rezende, C. E., & Souza, C. M. M. (2016). Spatial-temporal dynamics and sources of total Hg in a hydroelectric reservoir in the Western Amazon, Brazil. Environmental Science and Pollution Research, 23, 9640–9648.

    CAS  Google Scholar 

  • Pestana, I. A., Azevedo, L. S., Bastos, W. R., & de Souza, C. M. M. (2019). The impact of hydroelectric dams on mercury dynamics in South America: A review. Chemosphere, 219, 546–556.

    CAS  Google Scholar 

  • Pfeiffer, W. C., & Lacerda, L. D. (1988). Mercury inputs into the Amazon region, Brazil. Environmental Technology, 4, 325–330.

    Google Scholar 

  • Pimentel, T., Forsberg, B. R., Padovani, C. (1995). Contaminação Mercurial Em Peixes do Rio Madeira: Resultados e Recomendações.

  • Rabito, I., Bastos, W. R., Almeida, R., Anjos, A., de Holanda, Í. B. B., Galvão, R. C. F., & de Oliveira Ribeiro, C. A. (2011). Mercury and DDT exposure risk to fish-eating human populations in Amazon. Environment International, 37(1), 56–65.

    Google Scholar 

  • Roach, K. A., Jacobsen, N. F., Fiorello, C. V., Stronza, A., & Winemiller, K. O. (2013). Gold mining and mercury bioaccumulation in a floodplain lake and main channel of the Tambopata river, Perú. J. Journal of Environmental Protection, 4, 51–60.

    Google Scholar 

  • Roulet, M., Lucotte, M., Saint-Aubin, A., Tran, S., Rheault, I., Farella, N., & Mergler, D. (1998). The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chao formation of the lower Tapajos River Valley, Pará state, Brazil. Science of the Total Environment, 223, 1–24.

    CAS  Google Scholar 

  • Systat. (2008). Systat software, incorporation sigma plot for Windows version 11.0. Statistics for user’s guide (p. 578). Chicago: Systat Software Inc.

    Google Scholar 

  • Ullrich, S. M., Tanton, T. W., & Abdrashitova, S. A. (2001). Mercury in the aquatic environment: A review of factors affecting methylation. Critical Reviews in Environmental Science and Technology, 31, 241–293.

    CAS  Google Scholar 

  • UNEP. (2013). Minamata Convention on mercury-text and annexes. United Nations Environment Programme. Available via: http://wedocs.unep.org/handle/20.500.11822/8541. Accessed 2 Aug 2019.

  • Vieira, M., Bernardi, J. V., Dórea, J. G., Rocha, B. C., Ribeiro, R., & Zara, L. F. (2018). Distribution and availability of mercury and methylmercury in different waters from the Rio Madeira Basin, Amazon. Environmental Polllution, 235, 771–779.

    CAS  Google Scholar 

Download references

Funding

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support and the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) for collection assistance, especially to the coordinator of the Reserve, Lucas Henrique Sahm, for assistance in the collection of data. The authors also acknowledge the support from the São Paulo Research Foundation (Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP) for their financial support (process number 2017/24126-4) through a postdoc grant for the R. Moreira and the Portuguese Government (Foundation for Science and Technology - FCT) through a postdoc grant for the M. Daam (SFRH/BPD/109199/2015) and the research unit CENSE (UID/AMB/04085/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Ferreira Gomes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, D.F., Moreira, R.A., Sanches, N.A.O. et al. Dynamics of (total and methyl) mercury in sediment, fish, and crocodiles in an Amazonian Lake and risk assessment of fish consumption to the local population. Environ Monit Assess 192, 101 (2020). https://doi.org/10.1007/s10661-020-8066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8066-z

Keywords

Navigation