Skip to main content

Advertisement

Log in

Influence of changes in land use and land cover and rainfall on the streamflow regime of a watershed located in the transitioning region of the Brazilian Biomes Atlantic Forest and Cerrado

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Climate change and the intensification of anthropogenic activities in watersheds have been substantially changing the streamflow regime, which is a problem for water resource managers. This study assesses the influence of the changes in land use and land cover and rainfall on the streamflow regime. This study also models the pattern of these streamflows according to the rainfall and land use and land cover in the Santo Antônio River watershed, located in the transitioning region of the Brazilian Biomes Atlantic Forest and Cerrado. To assess the dynamic relationship between land use and land cover and the streamflow regime, five classes of land use and land cover were used. To characterize the hydrological pattern, data from six streamflow gauges and 24 rainfall gauges that influence the study area were used. Multiple regression models were adjusted to estimate streamflow using the explanatory variables rainfall and land use and land cover. As result, a direct relationship was found, as the decrease in streamflow in some drainage areas was influenced by the decrease in rainfall over the base period. The relationship between land use and land cover and streamflow was not significant. The reductions in the streamflow regimes over the years in the watershed were influenced by reductions in annual rainfall, which reduced about 19% while the water withdrawals from 2003 to 2014 increased 2350%. The results found in this study are useful to the water managers since they can estimate streamflow in any part of the studied river through rainfall and land use and land cover data. This helps to reduce the risks associated with the water allocation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adam, K. N., Fan, F. M., Pontes, P. R., Bravo, J. M., & Collischonm, W. (2015). Mudanças climáticas e vazões extremas na Bacia do Rio Paraná. Revista Brasileira de Recursos Hídricos, 20(4), 999–1007. https://doi.org/10.21168/rbrh.v20n4.p999-1007.

  • Adnan, N. A., & Atkinson, P. M. (2011). Exploring the impact of climate and land use changes on streamflow trends in a monsoon catchment. International Journal of Climatology, 31, 815–831. https://doi.org/10.1002/joc.2112.

    Article  Google Scholar 

  • Aguiar, S., de Santos, L. S., Arêdes, N., & Silva, S. (2016). Redes-Bioma: Informação e Comunicação para ação sociopolitica em ecorregiões. Ambient Soc, 19, 231–248. https://doi.org/10.1590/1809-4422ASOC20140004V1932016.

    Article  Google Scholar 

  • Aires, U. R. V. (2018). Utilização de NDVI para análise da influência da modificação da cobertura vegetalno regime de vazões. Dissertation, Universidade Federal de Viçosa. Retrieved from https://www.locus.ufv.br/handle/123456789/19381.

  • Aires, U. R. V., da Silva, D. D., Moreira, M. C., Ribeiro, C. A. A. S., & Ribeiro, C. B. d. M. (2020). The use of the normalized difference vegetation index to analyze the influence of vegetation cover changes on the streamflow in the Manhuaçu River Basin, Brazil. Water Resources Management, 34, 1933–1949. https://doi.org/10.1007/s11269-020-02536-1.

    Article  Google Scholar 

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22, 711–728. https://doi.org/10.1127/0941-2948/2013/0507.

    Article  Google Scholar 

  • Alves, P. J. P., & Rosa, O. (2019). Consciência ecológica na escola: um estudo de caso sobre o ensino - aprendizagem do bioma cerrado na escola pública. Revista Eixo, 8(2), 150–155. http://revistaeixo.ifb.edu.br/index.php/RevistaEixo/article/view/559.

  • Attorre, F., Alfo, M., De Sanctis, M., Francesconi, F., & Bruno, F. (2007). Comparison of interpolation methods for mapping climatic and bioclimatic variables at regional scale. International Journal of Climatology, 27, 1825–1843. https://doi.org/10.1002/joc.1495.

    Article  Google Scholar 

  • Bayer, D. M. (2014). Efeitos das mudanças de uso da terra no regime hidrológico de bacias de grande escala. Thesis, Universidade Federal do Rio Grande do Sul. Retrieved from https://www.lume.ufrgs.br/handle/10183/95694.

  • Belisario, D. d. L., Targa, M. S., Almeida, A. A. d. S., & Cocco, M. D. A. (2017). Hidrogramas de cheias em função de alterações no uso e ocupação do solo da bacia hidrográfica sete voltas no município de Taubaté, SP. Repositório Ciências Ambient, 1, 1–9.

    Google Scholar 

  • Bier, A. A., & Ferraz, S. E. T. (2017). Comparação de Metodologias de Preenchimento de Falhas em Dados Meteorológicos para Estações no Sul do Brasil. Rev Bras Meteorol., 32, 215–226. https://doi.org/10.1590/0102-77863220008.

    Article  Google Scholar 

  • Buanain, A. M., Favareto, A., Garcia, J. R., & Vieira Junior, P. A. (2018). Desafios para uma agricultura sustentável : abordagem baseada nos biomas brasileiros. Desenvolv em Debate, 6, 71–97.

    Google Scholar 

  • Calaça, A., Fachi, M., Silva, D. A., Oliveira, S. R., & de Melo, F. R. (2019). Mammals recorded in isolated remnants of Atlantic Forest in southern Goiás, Brazil. Biota Neotrop, 19, 1–9. https://doi.org/10.1590/1676-0611-BN-2018-0575.

    Article  Google Scholar 

  • Caruso, C., & Quarta, F. (1998). Interpolation methods comparison. Comput Math with Appl., 35, 109–126. https://doi.org/10.1016/S0898-1221(98)00101-1.

    Article  Google Scholar 

  • Coelho, A. L. N. (2007). MODELAGEM HIDROLÓGICA DA BACIA DO RIO DOCE (MG/ES) COM BASE EM IMAGENS SRTM (Shuttle Radar Topography Mission). Caminhos Geogr, 8, 116–131.

    Google Scholar 

  • Costa, D. P., Santos, J. J., Chaves, J. M., Rocha, W. d. J. S. d. F., & Vasconcelos, R. N. (2018). Novas tecnologias e sensoriamento remoto : aplicação de uma oficina didática para a disseminação das potencialidades dos produtos e ferramentas do mapbiomas. Sustain Agri, Food Environ Res, 6, 36–46. https://doi.org/10.7770/safer-V0N0-art1402.

    Article  Google Scholar 

  • Dancey, C. P., & Reidy, J. (2006). Estatística sem matemática para a Psicologia: usando o SPSS para Windows. Porto Alegre: Artmed.

  • Gao, B., Yang, D., Zhao, T., & Yang, H. (2012). Changes in the eco-flow metrics of the Upper Yangtze River from 1961 to 2008. Journal of Hydrology, 448-449, 30–38. https://doi.org/10.1016/j.jhydrol.2012.03.045.

    Article  Google Scholar 

  • Gonçalves, E. D., Pessoa, F. C. L., Neves, R. R., Rodrigues, R. S. S., & Souza, A. C. S. R. (2017). Identificação de regiões homogêneas e análise de regressão múltipla para regionalização de vazão na bacia hidrográfica do rio Tapajós. Revista Brasileira de Cartografia, 69, 1641–1654.

    Google Scholar 

  • Gupta, V., & Jain, M. K. (2018). Investigation of multi-model spatiotemporal mesoscale drought projections over India under climate change scenario. Journal of Hydrology, 567, 489–509. https://doi.org/10.1016/j.jhydrol.2018.10.012.

    Article  Google Scholar 

  • He, Y., Lin, K., & Chen, X. (2013). Effect of land use and climate change on runoff in the Dongjiang basin of south China. Mathematical Problems in Engineering. https://doi.org/10.1155/2013/471429.

  • IGAM - INSTITUTO MINEIRO DE GESTÃO DAS ÁGUAS. (2010). Plano de Ação de Recursos Hídricos da Unidade de Planejamento e Gestão dos Recursos Hídricos Santo Antônio PARH Santo Antônio. Belo Horizonte: CONSÓRCIO ECOPLAN - LUME. http://www.cbhdoce.org.br/wp-content/uploads/2014/10/PARH_Santo_Antonio.pdf.

  • Joseph, J. F., Ernest Falcon, H., & Sharif, H. O. (2013). Hydrologic trends and correlations in South Texas river basins: 1950-2009. Journal of Hydrologic Engineering, 18, 1653–1662. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000709.

    Article  Google Scholar 

  • Junqueira, R., Amorim, J. da S., & Oliveira, A. S. de. (2018). Comparação entre diferentes metodologias para preenchimento de falhas em dados pluviométricos. Sustentare, 2(1). https://doi.org/10.5892/st.v2i1.4982.

  • Latuf, M. de O. (2007). Mudanças no uso do solo e comportamento hidrológico nas bacias do rio Preto e ribeirão Entre Ribeiros. Dissertation, Universidade Federal de Viçosa. Retrieved from https://locus.ufv.br//handle/123456789/3686.

  • Leng, G., Tang, Q., & Rayburg, S. (2015). Climate change impacts on meteorological, agricultural and hydrological droughts in China. Global and Planetary Change, 126, 23–34. https://doi.org/10.1016/j.gloplacha.2015.01.003.

    Article  Google Scholar 

  • Lima, R. P. C., Silva, D. D., Pereira, S. B., Moreira, M. C., Passos, J. B. M. C., Coelho, C. D., & Elesbon, A. A. A. (2019). Development of an annual drought classification system based on drought severity indexes. Anais da Academia Brasileira de Ciencias, 91(1). https://doi.org/10.1590/0001-3765201920180188.

  • Liu, S., Huang, S., Huang, Q., Xie, Y., Leng, G., Luan, J., Song, X., Wei, X., & Li, X. (2017). Identification of the non-stationarity of extreme precipitation events and correlations with large-scale ocean-atmospheric circulation patterns: a case study in the Wei River Basin, China. J Hydrol, 548, 184–195. https://doi.org/10.1016/j.jhydrol.2017.03.012.

    Article  Google Scholar 

  • Maciel, S. A. (2017). Análise da relação chuva-vazão na bacia hidrográfica do rio Paranaíba. Brasil: Universidade Federal de Uberlândia.

    Book  Google Scholar 

  • MAPBIOMAS - MAPEAMENTO ANUAL DA COBERTURA E USO DO SOLO NO BRASIL. (2018). Coleção 3.0 O que é o MapBiomas. https://mapbiomas.org/o-projeto. Accessed 21 Ap 2018.

  • Mendes, N. G. d. S., Cecílio, R. A., Zanetti, S. S., & Santos, C. A. (2019). Relationship between the streamflows and precipitations in Itapemirim river basin. Floresta, 49, 171–180. https://doi.org/10.5380/rf.v49.

    Article  Google Scholar 

  • Moriasi, D., Arnold, J., & Van Liew, M. W. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50, 885–900. https://doi.org/10.13031/2013.23153.

    Article  Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—a discussion of principles. Journal of Hydrology, 10, 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.

    Article  Google Scholar 

  • Pinto, W. D. P., Lima, G. B., & Zanetti, J. B. (2015). Análise comparativa de modelos de séries temporais para modelagem e previsão de regimes de vazões médias mensais do Rio Doce, Colatina - Espírito Santo. Ciência e Natura, 37(3), 1–11. https://doi.org/10.5902/2179460x17143.

  • Porto, J. N. L. (2019). Parâmetros Ecofisiológicos de Podocnemis expansa: efeito dos avanços da agropecuária. Dissertation, Universidade Federal do Tocantins. Retrieved from http://hdl.handle.net/11612/1189.

  • Ritter, A., & Muñoz-Carpena. (2013). Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480, 33–45. https://doi.org/10.1016/j.jhydrol.2012.12.004.

    Article  Google Scholar 

  • Salis, H. H. C. de, Evangelista, L. P., Costa, A. M. da, & Horta, I. D. M. F. (2017). Diagnóstico da disponibilidade hídrica na Bacia Hidrográfica Do Rio Manso - MG. Caminhos de Geografia, 18(64), 91–102. https://doi.org/10.14393/rcg186408.

  • Santos, V. de O. (2016, June 2). Identificação e análise de tendências das variáveis hidrológicas e mudanças no uso e ocupação das terras no alto curso da bacia hidrográfica do Rio Uberaba, em Minas Gerais. Dissertation, Universidade Federal de Uberlândia, Uberlândia. Retrieved from https://repositorio.ufu.br/handle/123456789/20535.

  • Silva, P. M. D. O., De Mello, C. R., Silva, A. M., & Coelho, G. (2008). Modelagem da hidrógrafa de cheia em uma bacia hidrográfica da região Alto Rio Grande Modeling of the flood hydrograph in a watershed of the Alto Rio Grande region. Rev Bras Eng Agrícola e Ambient, 12, 258–265.

    Article  Google Scholar 

  • Silva, A. J. d., Monteiro, M. S. L., & Silva, M. V. (2015). Contrapontos da consolidação do agronegócio no cerrado brasileiro. Soc e Territ, 27, 95–114.

    Google Scholar 

  • Sousa, H. T. de, Pruski, F. F., Bof, L. H. N., Cecon, P. R., & Souza, J. R. de C. (2009). SisCaH 1.0 - Sistema Computacional para Análises Hidrológicas. Viçosa: ANA - AGÊNCIA NACIONAL DE ÁGUAS.

  • Sun, S., Wang, G., Huang, J., Mu, M., Yan, G., Liu, C., Gao, C., Li, X., Yin, Y., Zhang, F., Siguang, Z., & Hua, W. (2017). Spatial pattern of reference evapotranspiration change and its temporal evolution over Southwest China. Theoretical and Applied Climatology, 130, 979–992. https://doi.org/10.1007/s00704-016-1930-7.

    Article  Google Scholar 

  • Trimble, S. W., Weirich, F. H., & Hoag, B. L. (1987). Reforestation and the reduction of water yield on the Southern Piedmont since circa 1940. Water Resources Research, 23, 425–437. https://doi.org/10.1029/WR023i003p00425.

    Article  Google Scholar 

  • Tschiedel, A. da F., & Colossi, B. R. (2017). Estudo Hidrológico E Modelagem Chuva-Vazão Da Bacia Do Rio Doce. Águas Subterrâneas, 1–14. https://doi.org/10.14295/ras.v0i0.28764.

  • Valadão, R. M., Brito, E. S. De, Helena, S., Teixeira, S., & Silva, P. (2017). Distribuição de quelônios no Cerrado brasileiro. Multi-Science Journal, 8(1), 32. https://www.ifgoiano.edu.br/periodicos/.

  • Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27, 1413–1132. https://doi.org/10.1007/s11222-016-9696-4.

    Article  Google Scholar 

  • Zhang, Z., Chen, X., Xu, C. Y., Yuan, L., Yong, B., & Yan, S. (2011). Evaluating the non-stationary relationship between precipitation and streamflow in nine major basins of China during the past 50years. Journal of Hydrology, 409, 81–93. https://doi.org/10.1016/j.jhydrol.2011.07.041.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Brazilian Agricultural Research Corporation (EMBRAPA Cerrados), the Federal University of Viçosa (UFV), and the Coordination for the Improvement of Higher Education Personnel (CAPES—Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Laurinda Valadares Ferreira.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, F.L.V., Rodrigues, L.N. & da Silva, D.D. Influence of changes in land use and land cover and rainfall on the streamflow regime of a watershed located in the transitioning region of the Brazilian Biomes Atlantic Forest and Cerrado. Environ Monit Assess 193, 16 (2021). https://doi.org/10.1007/s10661-020-08782-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08782-5

Keywords

Navigation