Skip to main content
Log in

Evaluation of uncertainties in environmental impact assessment of naturally occurring radiation exposure situations on example of undisturbed and legacy NORM sites in the Fen Complex, Norway

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The risk from naturally occurring radioactive materials (NORM) has been extensively assessed, and this has led to the integration of specific NORM radiation protection requirements within the latest EU Directive 2013/59. Nevertheless, it has been internationally recognised that remaining NORM knowledge gaps and uncertainties now present similarly significant issues in addressing recent regulatory requirements. The multi-tiered nature of environmental impact assessment (EIA) implies per se possibility for uncertainties, but when EIA at radiation exposure sites includes consideration of sites with multiple radiation and contamination sources, different ecosystem transport pathways, effects and risks by applying different parameters and models, level of overall uncertainty increases. The results of EIA study in the Fen area in Norway, comprised of undisturbed and legacy NORM sites, have been evaluated in this analysis, in order to identify all existing input uncertainties and how they may impact the final conclusions, and thus, influence any subsequent decision-making. The main uncertainties have been identified in the measurement and exposure analysis tier, and were related to the heterogeneous distribution of radionuclides, radionuclide speciation, as well as to generic variability issues in the concepts used for mobility and biota uptake analysis (such as distribution coefficient, transfer factors and concentration ratios) as well as radioecological modelling. The uncertainties in the input values to the calculation of the dose arising from radon exposure in the Fen area led to an overall elevated uncertainty of the magnitude of the radiation exposure dose of humans. It has been concluded that an integrated, ecosystem-based approach with consideration of complexity of prevailing environmental conditions and interconnections must be applied to fully understand possible radiation effects and risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baas, J., Stefanowitz, A. M., Klimek, B., Laskowski, R., & Kooijman, S. A. L. M. (2010). Model based experimental design for assessing effects of mixtures of chemicals. Environmental Pollution, 158, 115–120.

    Article  CAS  Google Scholar 

  • Baeza, A., & Guillen, J. (2006). Influence of the soil bioavailability of radionuclides on the transfer of uranium and thorium to mushrooms. Applied Radiation and Isotopes, 64, 1020–1026.

    Article  CAS  Google Scholar 

  • Bojórquez-Tapia, L. A., Juárez, L., & Cruz-Bello, G. (2002). Integrating fuzzy logic, optimization and GIS for ecological impact assessments. Environmental Management, 30(3), 418–433.

    Article  Google Scholar 

  • Bondaruk, J., Janson, E., Gzyl, G., Chałupnik, S., & Wysocka, M. (2015). Identification of hazards for water environment in the upper silesian coal basin caused by the discharge of salt mine water containing particularly harmful substances and radionuclides. Journal Sustainable Mining, 14(4), 179–187.

    Article  Google Scholar 

  • Bradshaw, C., Kapustka, L., Barnthouse, L., Brown, J., Ciffroy, P., Forbes, V., Geras’kin, S., Kautsky, U., & Bréchignac, F. (2014). Using an ecosystem approach to complement protection schemes based on organism-level endpoints. Journal of Environmental Radioactivity, 136, 98–104.

    Article  CAS  Google Scholar 

  • Bréchignac, F. (2011). Radioecology's coming of age on the spot. Radioprot., 46, 6.

    Article  Google Scholar 

  • Bréchignac, F., Bradshaw, C., Carrol, S., Jaworska, A., Kapustka, L., Monte, L., & Oughton, D. (2011). Recommendations from the International Union of Radioecology to improve guidance on radiation protection. Integrated Environmental Assessment and Management, 7, 411–413.

    Article  Google Scholar 

  • Brøgger, W.C. (1921). Die Eruptivgesteiene des Kristianiagebietes IV. Das Fengebiet in Telemark, Norwegen. Skrifter, Det Norske videnskap - akademi i Oslo I, Mat - Naturv.Klasse 9, 408. (In Norwegian).

  • Brown, J. E., Alfonso, B., Avila, R., Beresford, N. A., Copplestone, D., Pröhl, G., & Ulanovsky, A. (2008). The ERICA Tool. Journal of Environmental Radioactivity, 99 (9), 1371–1383.

  • Cagno, S., Lind, O. C., Mrdakovic Popic, J., Skipperud, L., Nolf, W., Gert Nuyts, G., Vanmeert, F., Jaroszewicz, J., Janssens, K., & Salbu, B. (2020). Micro-analytical characterization of thorium-rich aggregates from Norwegian NORM sites (Fen Complex, Telemark). Journal of Environmental Radioactivity, 219, 106273.

    Article  CAS  Google Scholar 

  • Carvalho, F. P., Oliveira, J. M., & Malta, M. (2014). Intake of radionuclides with the diet in uranium mining areas. Procedia Earth and Planetry Science, 8, 43–47.

    Article  CAS  Google Scholar 

  • Courchesne, F., Cloutier-Hurteau, B., & Turmel, M. C. (2008). Relevance of rhizosphere research to the ecological risk assessment of trace metals in soils. Human and Ecological Risk Assessment, 14, 54–72.

    Article  CAS  Google Scholar 

  • Desideri, D., Asunta Meli, M., Feduzi, L., & Roselli, C. (2006). The importance of radiochemistry for the characterization of NORM and of environments contaminated by NORM. International Journal of Environmental Analytical Chemistry, 86(8), 601–613.

    Article  Google Scholar 

  • EC. (2003). EC report on the effluent and dose control from European Union NORM industries: assessment of current situation and proposal for a harmonized community approach. Radiation Protection RP 135, European Commission, Luxembourg, 2003.

  • Ellison, S.R.I., and Williams, A. (2012). (Eds.), Quantifying uncertainty in analytical measurement (2012).

  • Eurachem. (2007). Eurachem/CITAC Guide: Measurement uncertainty arising from sampling. A guide to methods and approaches.

  • Gangolells, M., Casals, M., Gasso, S., Forcada, N., Roca, X., & Fuertes, A. (2011). Assessing concerns of interested parties when predicting the significance of environmental impacts related to the construction process of residential buildings. Building and Environment, 46(5), 1023–1037.

    Article  Google Scholar 

  • GUM. (2008). Evaluation of measurement data. Guide to the expression of uncertainty in measurement. Working Group 1 of the Joint Committee for Guides in Metrology. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML.

  • Heincke, B. H., Smethurst, M. A., Bjørlykke, A., Dahlgren, S., Rønning, J. S., & Mogaard, J. O. (2008). Airborne gamma - ray spectrometer mapping for relating indoor radon concentrations to geological parameters in the Fen region, southeast Norway. In Slagstad, T. Geology for Society, Geological Survey of Norway. Special Publication, 11, 131–143.

    Google Scholar 

  • IAEA. (2004). Soil sampling for environmental contaminants. In IAEA Tec-Doc-1415. Vienna: International Atomic Energy Agency (IAEA).

    Google Scholar 

  • IAEA. (2010). Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments, Technical report series TRS-472. Vienna: International Atomic Energy Agency (IAEA).

    Google Scholar 

  • ICRP. (2007). The 2007 recommendations of the international commission on radiological protection. ICRP Publication 103. Annals of the ICRP, 37(2-4).

  • ICRP. (2008). Environmental protection - the concept and use of reference animals and plants. ICRP Publication 108. Annals of the ICRP, 38(4-6).

  • ICRP (2009). Environmental protection: transfer parameters for reference animals and plants. ICRP Publication 114. Annals of the ICRP, 39 (6).

  • ICRP. (2014). Protection of the environment under different exposure situations. ICRP Publication 124. Annals of the ICRP, 43(1).

  • ICRP (2019). Radiological protection from naturally occurring radioactive material (NORM) in industrial processes. ICRP Publication 142. Ann. ICRP, 48 (4).

  • Impens, N., Salomaa, S. (2020). Second joint roadmap for radiation protection research. D3.7 project deliverable). EJP-CONCERT, European Joint Programme for the Integration of Radiation Protection Research H2020 – 662287.

  • Johansen, M. P., Barnett, C. L., Beresford, N. A., Brown, J. E., Cerne, M., Howard, B. J., Kamboj, S., Keum, D.-K., Smodiš, B., Twining, J. R., Vandenhove, H., Vivesi Batlle, J., Wood, M. D., & Yu, C. (2012). Assessing doses to terrestrial wildlife at a radioactive waste disposal site: inter- comparison of modelling approaches. Science of the Total Environment, 238–246, 427–428.

    Google Scholar 

  • Juang, K.-W., Liao, W.-J., Liu, T.-L., Tsuic, L., & Lee, D.-Y. (2008). Additional sampling based on regulation threshold and kriging variance to reduce the probability of false delineation in a contaminated site. Science of the Total Environment, 389, 20–28.

    Article  CAS  Google Scholar 

  • Kortenkamp, A., Faust, M., Scholze, M., & Backhaus, T. (2007). Low-level exposure to multiple chemicals: reason for human health concerns? Environmental Health Perspectives, 115, 106–114.

    Article  Google Scholar 

  • Kranrod, C., Ishikawa, T., Tokonami, S., Sorimachi, A., Chanyotha, S., & Chankov, N. (2010). Comparative dosimetry of radon and thoron. Radiation Protection Dosimetry, 141(4), 424–427.

    Article  CAS  Google Scholar 

  • Maringer, F. J., Baumgartner, A., Cardellini, F., Cassette, P., Crespo, T., Dean, J., Wiedner, H., Hulka, J., Hult, M., Jerome, S., Kabrt, F., Kovar, P., Larijani, C., Lutter, G., Marouli, M., Mauring, A., Mazanova, M., Michalik, B., Michielsen, N., Peyres, V., Pierr, S., Pollanen, R., Pomme, S., Reis, M., Stietka, M., Szucs, L., & Vodenik, B. (2017). Advancement in NORM metrology – Results and impacts of the European joint research project MetroNORM. Applied Radiation and Isotopes, 126, 273–278.

    Article  Google Scholar 

  • Mora, J.C., Real, A., et al. (2019). Guidance to reduce sampling uncertainty. Deliverable D 9.60. TERRITORIES project, EJP-CONCERT, H2020 – 662287.

  • Mrdakovic Popic, J. (2014). Environmental impact of radionuclides and trace elements in the thorium rich fen area in Norway. PhD thesis. Norwegian University of Life Sciences. ISBN 978-82-575-1196-8.

  • Mrdakovic Popic, J., Salbu, B., Strand, T., & Skipperud, L. (2011). Assessment of radionuclide and metal contamination in a thorium rich area in Norway. Journal of Environmental Monitoring, 13, 1730–1738.

    Article  Google Scholar 

  • Mrdakovic Popic, J., Raj Bhatt, C., Salbu, B., & Skipperud, L. (2012a, 2012). Outdoor 220Rn, 222Rn and terrestrial gamma radiation levels: investigation study in the thorium rich Fen Complex, Norway. Journal of Environmental Monitoring, 14, 193–201.

  • Mrdakovic Popic, J., Salbu, B., & Skipperud, L. (2012b). Ecological transfer of radionuclides and metals to free-living earthworm species in natural habitats rich in NORM. Science of the Total Environment, 414, 167–176.

    Article  CAS  Google Scholar 

  • Mrdakovic Popic, J., Meland, S., Salbu, B., & Skipperud, L. (2014). Mobility of radionuclides and trace elements in soils from legacy NORM and undisturbed 232Th-rich sites. Environmental Science: Processes & Impacts, 16(5), 1124–1134.

    CAS  Google Scholar 

  • Mrdakovic Popic, J., Oughton, D. H., Salbu, B., & Skipperud, L. (2020). Transfer of naturally occurring radionuclides from soil to wild forest flora in an area with enhanced legacy and natural radioactivity in Norway. Environmental Science: Processes & Impacts, 2020(22), 350.

    Google Scholar 

  • Norwegian Ministry of Climate and Environment. (2003). Environmental impact assessment.

  • Oughton, D. H., Aguero, A., Avila, R., Brown, J. E., Copplestone, D., & Gilek, M. (2008). Addressing uncertainties in the ERICA integrated approach. Journal of Environmental Radioactivity, 99(9), 1384–1392.

    Article  CAS  Google Scholar 

  • Pollution Control Act (2010). Amendment of pollution control act (1981) from 2010: Forskrift om forurensningslovens anvendelse på radioaktiv forurensning og radioaktivt avfall (2010), FOR-2010-11-01-1394 (In Norwegian), Lovdata, Oslo. Available at: http://www.lovdata.no/ (Accessed on 17. March 2020.).

  • Radiation Dose and Health Effects (2000) 5th International conference on high levels of natural radiation and radon areas:, Munich, September 4-7, 2000, ICS 1225, Editors: W. Burkart Mehdi Sohrabi A. Bayer, Print ISBN 9780444508638.

  • Salbu, B. (2000). Speciation of radionuclides in the environment. In: Meyers R, editor.

    Google Scholar 

  • Salbu, B., Lind, O. C., & Skipperud, L. (2004). Radionuclide speciation and its relevance in environmental impact assessments. Journal of Environmental Radioactivity, 74(1-3), 233–242.

    Article  CAS  Google Scholar 

  • Salbu, B., Kashparov, V., Lind, O. C., Garcia-Tenorio, R., Johansen, M. P., Child, D. P., Roos, P., & Sancho, C. (2018). Challenges associated with the behaviour of radioactive particles in the environment. Journal of Environmental Radioactivity, 186, 101–115.

    Article  CAS  Google Scholar 

  • Salomaa S. et al. (2019). Updating the SRAs of MELODI, ALLIANCE, NERIS, EURADOS and EURAMED (D2.13 project deliverable). EJP-CONCERT, European Joint Programme for the Integration of Radiation Protection Research H2020 – 662287.

  • Sauvé, S. (2002). Speciation of metals in soils. In: Allen, H.E. (Ed9, Bioavailability of metals in terrestrial ecosystems: Importance of partitioning for bioavailability to invertebrates, microbes and plants. Society of environmental toxicology and chemistry (SETAC), Pensacola, FL, USA, 7-37.

  • SFT (2009). Helsebaserte tilstandklasser for forurenset grunn. Veiledning TA-2553/2009. Norwegian Pollution Control Authority. Oslo, Norway,78 pp. (In Norwegian).

  • Sneve, K. M., Smith, K., & Mrdakovic Popic, J. (2020). Practical radioecology support in the management and regulatory supervision of legacy sites. Journal of Radiological Protection, 40, 487–504.

    Article  CAS  Google Scholar 

  • Stark, K., Goméz-Rose, J. M., Vives i Batlle, J., Lindbo Hansen, E., Beaugelin-Seiller, K., Kapustka, L. A., Wood, M. D., Bradshaw, C., Real, A., McGuire, C., & Hinton, T. (2017). Dose assessment in environmental radiological protection: State of the art and perspectives. Journal of Environmental Radioactivity, 175, 105–114.

    Article  Google Scholar 

  • Suter, II. G. W. (2007). Ecological risk assessment (2nd ed., pp. 643). Boca Raton: CRC Press.

  • Tennøy, A., Kværner, J. and Gjerstad, K.I. (2006). Uncertainty in environmental impact assessment predictions: the need for better communication and more transparency. Impact Assess. Proj. Apprais., 24 (1) 2006, 45-56.

  • Thissen, W.I.H. and Agusdinata, D.B. (2008). Handling deep uncertainties in impact assessments. Proceedings of the 28th Annual Conference of IAIA, May 5-9, 2008, Perth, Australia.

  • Thorium Committee (2008). Report: Thorium as an energy source - opportunities for Norway. Thorium Report, ISBN 978-82-7017-692-2 (printed) ISBN 978-82-7017-693-9, 150 pp.

  • Turtiainen, T., Brunfeldt, M., Rasilainen, T., Skipperud, L., Valle, L., Mrdakovic Popic, J., Roos, P., Sundell-Bergman, S, Rosen, K. (2013). Doses from natural radioactivity in wild mushrooms and berries to the Nordic population. Report from BERMUDA NKS Project, NKS-273. ISBN 978-87-7893-346-1.

  • UNSCEAR (2006). Effects of ionizing radiation. Volume II, Annex E: Sources-to-effects assessment for radon in homes and workplace, United Nations, 138 pp.

  • UNSCEAR. (2008). Sources and effects of ionizing radiation. In Volume II, Annex E: Effects of ionizing radiation on non-human biota (97 pp). United: Nations.

    Google Scholar 

  • Urso, L., Ipbüker, C., Mauring, K., Ohvril, H., Vilbaste, M., Kaasik, M. and et al. (2019). Guidance on uncertainty analysis for radioecological models. Deliverable D 9.62. TERRITORIES project, EJP-CONCERT, H2020 – 662287.

  • Vandenhove, H., Gil-Garćia, C., Rigol, A., & Vidal, M. (2009). New best estimates for radionuclides solid–liquid distribution coefficients in soils. Part 2. Naturally occurring radionuclides. Journal of Environmental Radioactivity, 100, 697–703.

    Article  CAS  Google Scholar 

  • Walke, R. C., Kirchner, G., Xu, S., & Dverstorp, B. (2015). Post-closure biosphere assessment modelling: comparison of complex and more stylised approaches. Journal of Environmental Radioactivity, 148, 50–58.

    Article  CAS  Google Scholar 

  • Walker, W. E., Harremoës, P., Rotmans, J., Van Der Sluijs, J. P., Van Asselt, M. B., Janssen, P., & Krayer von Krauss, M. P. (2003). Defining uncertainty a conceptual basis for uncertainty management in model-based decision support. Integrated Assessment, 4, 5–17.

    Article  Google Scholar 

  • Wathern, P. (1988). Environmental impact assessment: theory and practice. Edit. Wathern, P. ISBN 0-415-07884-9 (Print Edition).

Download references

Acknowledgements

The authors would like to thank Dr. Simon Mark Jerome (Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Norway) whose valuable corrections and suggestions improved this paper significantly.

Funding

This project was supported by the Research Council of Norway through its Centre of Excellence funding scheme, project number 223268/F50.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Mrdakovic Popic.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popic, J.M., Skipperud, L. Evaluation of uncertainties in environmental impact assessment of naturally occurring radiation exposure situations on example of undisturbed and legacy NORM sites in the Fen Complex, Norway. Environ Monit Assess 192, 782 (2020). https://doi.org/10.1007/s10661-020-08747-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08747-8

Keywords

Navigation