Skip to main content
Log in

Risks of graphene nanomaterial contamination in the soil: evaluation of major ions

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soils are facing new environmental contaminants, such as nanomaterials. While these emerging contaminants are increasingly being released into soil, their potential impact on this medium and their effect on soil’s major chemical components (e.g., sulfate, nitrate, ammonia, and phosphate) have yet to be examined, as well as their relation with microbial toxicity. Herein, column experiments were conducted to investigate the behavior of major ions under 10 and 200 mg/L multiple contaminations of graphene nanomaterials in agricultural and undisturbed soils, as well as the retention of the graphene nanomaterials in the soil and their effect on soil zeta potentials throughout the column. Moreover, to evaluate the impact of the risks of graphene nanomaterial contamination on soil major ions, the present study also examines the bacterial toxicity. The results showed that graphene retention was influenced the soil zeta potentials. Graphene also influenced the concentrations of the major ions in soil and the order of the influence degree was sulfate > phosphate > ammonia > nitrate. The changes of the major ions in soil by the exposure of graphene nanomaterials have also affected the response of selected bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelwaheb, M., Jebali, K., Dhaouadi, H., & Dridi-Dhaouadi, S. (2019). Adsorption of nitrate, phosphate, nickel and lead on soils: risk of groundwater contamination. Ecotoxicology and Environmental Safety, 179, 182–187.

    CAS  Google Scholar 

  • Akhavan, O., Bijanzad, K., & Mirsepah, A. (2014). Synthesis of graphene from natural and industrial carbonaceous wastes. RSC Advances, 4, 20441–20448.

    CAS  Google Scholar 

  • American Public Health Association. (2017). Standard methods for the examination of water and waste water (23rd ed.). American Public Health Association, American Water Works Association, Water Environment Federation.

  • Angle, J. S., Gross, C. M., Hill, R. L., & McIntosh, M. S. (1993). Soil nitrate concentrations under corn as affected by tillage, manure, and fertilizer applications. Journal of Environmental Quality, 22, 141–147.

    Google Scholar 

  • Anjum, N. A., Adam, V., Kizek, R., Duarte, A. C., Pereira, E., Iqbal, M., Lukatkin, A. S., & Ahmad, I. (2015). Nanoscale copper in the soil-plant system – toxicity and underlying potential mechanisms. Environmental Research, 138, 306–325.

    CAS  Google Scholar 

  • Apak, R., Guclu, K., Ozyurek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52, 7970–7981.

    CAS  Google Scholar 

  • Baysal, A., & Saygin, H. (2018). Effect of zinc oxide nanoparticles on the trace element contents of soils. Chemistry and Ecology, 34(8), 713–726.

    CAS  Google Scholar 

  • Baysal, A., Saygin, H., & Ustabasi, G. S. (2018). Influence of environmental media on carbon nanotubes and graphene nanoplatelets towards bacterial toxicity. Archives of Environmental Protection, 44(3), 85–98.

    CAS  Google Scholar 

  • Baysal, A., Saygin, H., & Ustabasi, G. S. (2019). Influence of Al2O3 nanoparticles on the soil elements. Bulletin of Environmental Contamination and Toxicology, 102, 98–104.

    CAS  Google Scholar 

  • Baysal, A., Saygin, H., & Ustabasi, G. S. (2020a). An insight into the dependency on sample preparation for (eco) toxicity assessment of TiO2 nanoparticles. Environmental Monitoring and Assessment, 192(2), 1–14.

    Google Scholar 

  • Baysal, A., Saygin, H., & Ustabasi, G. S. (2020b). Age-related physicochemical differences in ZnO nanoparticles in the seawater and their bacterial interaction. Environmental Monitoring and Assessment, 192(5), 276.

    CAS  Google Scholar 

  • Brady, N. C., & Weil, R. R. (1996). The nature and properties of soils. Prentice-Hall.

  • Cabrera, M., Molina, J.A., & Vigil, M. (2008). Modeling the nitrogen cycle. In Nitrogen in Agricultural Systems. American Society of Agronomy Monograph 40.

  • Chintala, R., Mollinedo, J., Schumacher, T. E., Papiernik, S. K., Malo, D. D., Clay, D. E., Kumar, S., & Gulbrandson, D. W. (2013). Nitrate sorption and desorption in biochars from fast pyrolysis. Microporous and Mesoporous Materials, 179, 250–257.

    CAS  Google Scholar 

  • Chung, H., Kim, M. J., Ko, K., Kim, J. H., Kwon, H. A., Hong, I., Park, N., Lee, S. W., & Kim, W. (2015). Effects of graphene oxides on soil enzyme activity and microbial biomass. Science of the Total Environment, 514, 307–313.

    CAS  Google Scholar 

  • Clough, T. J., Condron, L. M., Kammann, C., & Müller, C. (2013). A review of biochar and soil nitrogen dynamics. Agronomy, 3, 275–293.

    CAS  Google Scholar 

  • Condron, L. M., Turner, B. L., & Cade-Menun, B. J. (2005). Chapter 4: chemistry and dynamics of soil organic phosphorus. In J. T. Sims & A. N. Sharpley (Eds.), Agronomy monographs. https://doi.org/10.2134/agronmonogr46.c4.

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    CAS  Google Scholar 

  • Guo, P., Xu, N., Li, D., Huangfu, X., & Li, Z. (2018). Aggregation and transport of rutile titanium dioxide nanoparticles with montmorillonite and diatomite in the presence of phosphate in porous sand. Chemosphere, 204, 327–334.

    CAS  Google Scholar 

  • Gustafsson, J. P., Akram, M., & Tiberg, C. (2015). Predicting sulphate adsorption/desorption in forest soils: evaluation of an extended Freundlich equation. Chemosphere, 119, 83–89.

    CAS  Google Scholar 

  • Hagemann, N., Kammann, C. I., Schmidt, H. P., Kappler, A., & Behrens, S. (2017). Nitrate capture and slow release in biochar amended compost and soil. PLoS ONE, 12(2), e0171214.

    Google Scholar 

  • He, K., Chen, G., Zeng, G., Peng, M., Huang, Z., Shia, J., & Huang, T. (2017). Stability, transport and ecosystem effects of graphene in water and soil environments. Nanoscale, 9, 5370–5388.

    CAS  Google Scholar 

  • Ishiguro, M., Manabe, Y., Seo, S., Akae, T. (2003). Effect of sulfate on nitrate transport in volcanic ash soils sampled from the A and the B horizons. Soil Science and Plant Nutrition 49(2):249-254

  • Jiang, Y., Zhan, X., Yin, X., Sun, H., & Wang, N. (2018). Graphene oxide-facilitated transport of Pb2+ and Cd2+ in saturated porous media. Science of the Total Environment, 631–632, 369–376.

    Google Scholar 

  • Jian-Zhou, H., Lia, C. C., Wanga, D. J., & Zhou, D. M. (2015). Biofilms and extracellular polymeric substances mediate the transport of graphene oxide nanoparticles in saturated porous media. Journal of Hazardous Materials, 300, 467–474.

    Google Scholar 

  • Karlen, L., Ditzler, C. A., & Andrews, S. S. (2003). Soil quality: why and how? Geoderma, 114, 145–156.

    CAS  Google Scholar 

  • Kaya, A., & Yukselen, Y. (2005). Zeta potential of soils with surfactants and its relevance to electrokinetic remediation. Journal of Hazardous Materials, 120(1–3), 119–126.

    CAS  Google Scholar 

  • Kim, M.-J., Ko, D., Ko, K., Kim, D., Lee, J.-Y., Woo S. M., Kim, W., Chung, H. (2018). Effects of silver-graphene oxide nanocomposites on soil microbial communities. Journal of Hazardous Materials, 346, 93-102

  • Liu, F., Chung, S., Oh, G., & Seo, T. S. (2012). Three-dimensional graphene oxide nanostructure for fast and efficient water soluble dye removal. ACS Applied Materials & Interfaces, 4(2), 922–927.

    CAS  Google Scholar 

  • Ozbek, N., & Baysal, A. (2018). The miniaturised solid phase extraction of some trace metals using graphene nanoplatelets by GFAAS. International Journal of Environmental Analytical Chemistry, 98, 685–694.

    CAS  Google Scholar 

  • Qi, Z., Zhang, L., & Chen, W. (2014a). Transport of graphene oxide nanoparticles in saturated sandy soil. Environmental Science: Processes and Impacts, 16, 2268–2277.

    CAS  Google Scholar 

  • Qi, Z., Zhang, L., & Wang, F. (2014b). Factors controlling transport of graphene oxide nanoparticles in saturated sand columns. Environmental Toxicology and Chemistry, 33(5), 998–1004.

    CAS  Google Scholar 

  • Qi, Z., Du, T., Ma, P., Liu, F., & Chen, W. (2019). Transport of graphene oxide in saturated quartz sand containing iron oxides. Science of the Total Environment, 657, 1450–1459.

    CAS  Google Scholar 

  • Rastghalam, Z. S., Cheng, T., & Freake, B. (2018). Fine particle attachment to quartz sand in the presence of multiple interacting dissolved components. Science of the Total Environment, 645, 499–508.

    CAS  Google Scholar 

  • Regelink, C., Stoof, C. R., Rousseva, S., Weng, L., Lair, G. J., Kram, P., Nikolaidis, N. P., Kercheva, M., Banwart, S., & Comans, R. N. J. (2015). Linkages between aggregate formation, porosity and soil chemical properties. Geoderma, 247–248, 24–37.

    Google Scholar 

  • Ren, W., Ren, G., Teng, Y., Li, Z., & Li, L. (2015). Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community. Journal of Hazardous Materials, 297, 286–294.

    CAS  Google Scholar 

  • Saygin, H., & Baysal, A. (2020). Similarities and discrepancies between bio-based and conventional submicron-sized plastics: in relation to clinically important bacteria. Bulletin of Environmental Contamination and Toxicology, 105, 26–35.

    CAS  Google Scholar 

  • Schultz, C. L., Gray, J., Verweij, R. A., Busquets-Fité, M., Puntes, V., Svendsen, C., Lahive, E., & Matzke, M. (2018). Aging reduces the toxicity of pristine but not sulphidised silver nanoparticles to soil bacteria. Environmental Science: Nano, 5, 2618–2130.

    CAS  Google Scholar 

  • Shams, S. S., Zhang, L. S., Hu, R., Zhang, R., & Zhu, J. (2015). Synthesis of graphene from biomass: a green chemistry approach. Materials Letter, 161, 476–479.

    CAS  Google Scholar 

  • Sokolova, T. A., & Alekseeva, S. A. (2008). Adsorption of sulfate ions by soils (a review). Eurasian Soil Science, 41(2), 140–148.

    Google Scholar 

  • Song, J., Duan, C., Sang, Y., Wu, S., Ru, J., & Cui, X. (2018). Effects of graphene on bacterial community diversity and soil environments of Haplic Cambisols in Northeast China. Forests, 9(11), 677.

    Google Scholar 

  • Stewart, J. W. B., & Tiessen, H. (1987). Dynamics of soil organic phosphorus. Biogeochemistry, 4, 41–60.

    CAS  Google Scholar 

  • Turner, B. L., Cade-Menun, B. J., Condron, L. M., & Newman, S. (2005). Extraction of soil organic phosphorus. Talanta, 66(2), 294–306.

    CAS  Google Scholar 

  • Wang, D., Wang, G., Zhang, G., Xu, X., & Yang, F. (2013). Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal. Bioresource Technology, 131, 527–530.

    CAS  Google Scholar 

  • Wang, B., Lehmann, J., Hanley, K., Hestrin, R., & Enders, A. (2015). Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere, 138, 120–126.

    CAS  Google Scholar 

  • Wang, M., Gao, B., Tang, D., & Yu, C. (2018). Concurrent aggregation and transport of graphene oxide in saturated porous media: roles of temperature, cation type, and electrolyte concentration. Environmental Pollution, 235, 350–357.

    CAS  Google Scholar 

  • Wang, Z., Shen, C., Du, Y., Zhang, Y., & Li, B. (2019). Influence of phosphate on deposition and detachment of TiO2 nanoparticles in soil. Frontiers of Environmental Science and Engineering, 13, 79.

    Google Scholar 

  • Wu, C., Zhang, X., Li, C., Cheng, C., & Zheng, Y. (2018). Adsorption of ammonium by graphene oxide-based composites prepared by UV irradiation and using as slow-release fertilizer. Journal of Polymers and the Environment, 26, 4311–4320.

    CAS  Google Scholar 

  • Xu, X., Xu, N., Cheng, X., Guo, P., Chen, Z., & Wang, D. (2017). Transport and aggregation of rutile titanium dioxide nanoparticles in saturated porous media in the presence of ammonium. Chemosphere, 169, 9–17.

    CAS  Google Scholar 

  • Yang, J., Li, H., Zhang, D., Wu, M., & Pan, B. (2017). Limited role of biochars in nitrogen fixation through nitrate adsorption. Science of the Total Environment, 592, 758–765.

    CAS  Google Scholar 

  • Yang, Y., Zhao, Y., Wang, M., Meng, H., & Ye, Z. (2020). Mechanistic analysis of ecological effects of graphene nanomaterials on plant ecosystems. Asia-Pacific Journal of Chemical Engineering., 2467. https://doi.org/10.1002/apj.2467.

  • Yao, Y., Gao, B., Zhang, M., Inyang, M., & Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89, 1467–1471.

    CAS  Google Scholar 

  • Ye, S., Zeng, G., Wu, H., Liang, J., Zhang, C., Dai, J., Xiong, W., Song, B., Wu, S., & Yu, J. (2019). The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil. Resources, Conservation and Recycling, 140, 278–285.

    Google Scholar 

  • Yin, Q., Ren, H., Wang, R., & Zhao, Z. (2018). Evaluation of nitrate and phosphate adsorption on Al-modified biochar: influence of Al content. Science of the Total Environment, 631–632, 895–903.

    Google Scholar 

  • Zheng, Q., Zhang, Y., Li, Y., Zhang, Z., Wu, A., & Shi, H. (2019). Adsorption of sulfate from acid mine drainage in Northwestern China using Malan loess. Arabian Journal of Geosciences, 12, 348.

    Google Scholar 

  • Zhou, Y., Zhang, F., Tang, L., Zhang, J., Zeng, G., Luo, L., Liu, Y., Wang, P., Peng, B., & Liu, X. (2017). Simultaneous removal of atrazine and copper using polyacrylic acid-functionalized magnetic ordered mesoporous carbon from water: adsorption mechanism. Scientific Reports, 7, 43831.

    Google Scholar 

Download references

Acknowledgments

This work financially supported by Istanbul Aydin University Council of Scientific Research Projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baysal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 376 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baysal, A., Saygin, H. & Ustabasi, G.S. Risks of graphene nanomaterial contamination in the soil: evaluation of major ions. Environ Monit Assess 192, 622 (2020). https://doi.org/10.1007/s10661-020-08561-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08561-2

Keywords

Navigation