Skip to main content

Advertisement

Log in

Evaluating the suitability of urban groundwater resources for drinking water and irrigation purposes: an integrated approach in the Agro-Aversano area of Southern Italy

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Deterioration of groundwater quality due to the introduction of pollutants from natural and anthropic sources has become a major environmental issue. We tested three methodologies in assessing groundwater quality and intrinsic aquifer vulnerability in the Agro-Aversano area (Southern Italy). A geographic information system (GIS)-based groundwater quality index (GQI) was realized to assess groundwater quality for drinking and irrigation use and, in parallel, standard SINTACS was applied to evaluate the intrinsic vulnerability of the aquifer. Nitrate concentrations and sodium absorption ratio (SAR) in groundwater samples were used to verify the reliability of vulnerability data. GQI analysis pointed to a general poor quality of groundwater both for drinking and irrigation use, especially in sub-urban areas. The spatial pattern of water quality from GQI analysis was positively related to nitrate and fluoride concentrations for drinking use and to bicarbonate and sodium concentrations for irrigation use, whose levels exceeded the WHO and FAO recommended thresholds, respectively. Standard SINTACS was found to be inadequate for describing the aquifer state, its results showing no correlation with nitrate concentration or SAR. Because of this inconsistency, we tested a novel approach combining GQI with SINTACS analysis. Results showed positive correlation with nitrate (r = 0.63) and SAR (r = 0.64) contents, thus pointing to combined SINTACS-GQI as a more reliable approach than standard methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen, R.G., Pereira, L.S., Raes, D., Smith,M., (1998). Crop Evapotranspiration – Guidelines for Computing Crop Water Requirements. Food and Agriculture Organization of the United Nations, FAO, Rome, Italy

  • Allen, R. G., Wright, J. L., Pruitt, W. O., Pereira, L. S., & Jensen, M. E. (2007). Chapter 8. Water Requirements. In “Water requirements”, in design and operation of farm irrigation systems (2nd ed., pp. 208–228). American Society of Agricultural and Biological Engineers, Michigan (US): St. Joseph.

    Chapter  Google Scholar 

  • Aller, L., Bennet, T., Lehr, J.H., Petty, R.J., Hackett, G., 1987. DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeological setting. (EPA/600/2-87/035).

  • Allocca, V., Celico, F., Celico, P., De Vita, P., Fabbrocino, S., Mattia, C., Monacelli, G., Musilli, I., Piscopo, V., Scalise, A.R., Summa, G., Tranfaglia, G., 2007. Carta Idrogeologica dell'Italia Meridionale. Istituto Poligrafico e Zecca dello Stato.

  • Arauzo, M. (2017). Vulnerability of groundwater resources to nitrate pollution: a simple and effective procedure for delimiting nitrate vulnerable zones. Science of The Total Environment, 575, 799–812. https://doi.org/10.1016/j.scitotenv.2016.09.139.

    Article  CAS  Google Scholar 

  • ASTER Global Digital Elevation Map Announcement 2019: available on line at: https://asterweb.jpl.nasa.gov/gdem.asp.

  • Babiker, I. S., Hohamed, M. A. A., & Hiyama, T. (2007). Assessing groundwater quality using GIS. Water Resources Management, 21(4), 699–715. https://doi.org/10.1007/s11269-006-9059-6.

    Article  Google Scholar 

  • Barra, D., Romano, P., Santo, A., Campajola, L., Roca, V., & Tuniz, C. (1996). The Versilian transgression in the Volturno river plain (Campania, Southern Italy): paleoenvironmental history and chronological data. Il Quaternario., 9, 445–458.

    Google Scholar 

  • Bove, M. A., Ayuso, R. A., De Vivo, B., And, L. A., & Albanese, S. (2011). Geochemical and isotopic study of soils and waters from an Italian contaminated site: Agro Aversano (Campania, Italy). Journal of Geochemical Exploration, 109, 38–50. https://doi.org/10.1016/j.gexplo.2010.09.013.

    Article  CAS  Google Scholar 

  • Busico, G., Cuoco, E., Sirna, M., Mastrocicco, M., & Tedesco, D. (2017a). Aquifer vulnerability and potential risk assessment: application to an intensely cultivated and densely populated area in Southern Italy. Arabian Journal of Geosciences, 10(10), 222–213. https://doi.org/10.1007/s12517-017-2996-y.

    Article  CAS  Google Scholar 

  • Busico, G., Kazakis, N., Colombani, N., Mastrocicco, M., Voudouris, K., & Tedesco, D. (2017b). A modified SINTACS method for groundwater vulnerability and pollution risk assessment in highly anthropized regions based on NO3 and SO4 2− concentrations. Science of The Total Environment, 609, 1512–1523. https://doi.org/10.1016/j.scitotenv.2017.07.257.

    Article  CAS  Google Scholar 

  • Busico, G., Cuoco, E., Kazakis, N., Colombani, N., Mastrocicco, M., Tedesco, D., & Voudouris, K. (2018). Multivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace elements occurrence in the Campania plain, southern Italy. Environmental Pollution, 234, 260–269. https://doi.org/10.1016/j.envpol.2017.11.053.

    Article  CAS  Google Scholar 

  • Busico, G., Mastrocicco, M., Cuoco, E., Sirna, M., & Tedesco, D. (2019). Protection from natural and anthropogenic sources: a new rating methodology to delineate “nitrate vulnerable zones”. Environmental Earth Sciences, 78(4). https://doi.org/10.1007/s12665-019-8118-2

  • CARG project: available online at: http://www.isprambiente.gov.it/it/cartografia/carte-geologiche-e-geotematiche/carta-geologica-alla-scala-1-a-50000.

  • Civita, M., & De Maio, M. (2004). Assessing and mapping groundwater vulnerability to contamination: the Italian “combined” approach. Geofísica Internacional, 43(4), 513–532. https://doi.org/10.4236/jwarp.2010.21003.

    Article  CAS  Google Scholar 

  • Corine Land Cover (2018). available online at: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018

  • Corniello, A., & Ducci, D. (2009). Possible sources of nitrate in groundwater of Acerra area (Piana Campana). Engineering Hydro Environmental Geology, 12, 155–164.

    Google Scholar 

  • Corniello, A., & Ducci, D. (2014). Hydrogeochemical characterization of the main aquifer of the “LitoraleDomizio-Agro Aversano NIPS” (Campania - southern Italy). Journal of Geochemical Exploration, 137, 1–10. https://doi.org/10.1016/j.gexplo.2013.10.016.

    Article  CAS  Google Scholar 

  • Corniello, A., Ducci, D., Rotella, M., Trifuoggi, M., & Ruggieri, G. (2010). Hydrogeology and hydrogeochemistry of the plain between MT. Massico and the river Volturno (Campania region, Italy). Italian Journal of Engineering Geology and Environment, 1, 51–64. https://doi.org/10.4408/IJEGE.2010-01.O-04.

    Article  Google Scholar 

  • Cuoco, E., Darrah, T. H., Buono, G., Verrengia, G., De Francesco, S., Eymold, W. K., & Tedesco, D. (2015). Inorganic contaminants from diffuse pollution in shallow groundwater of the Campanian plain (southern Italy). Implications for geochemical survey. Environmental Monitoring and Assessment, 187(2), 46. https://doi.org/10.1007/s10661-015-4307-y.

    Article  CAS  Google Scholar 

  • De Vivo, B., Rolandi, G., Gans, P. B., Calvert, A., Bohroson, W. A., Spera, F. J., & Belkin, H. E. (2001). New constraints on the pyroclastic eruptive history of the Campanian volcanic plain (Italy). Mineralogy and Petrology, 73, 47–65. https://doi.org/10.1007/s007100170010.

    Article  Google Scholar 

  • Di Gennaro, A. (2002). I sistemi di terra della Campania. Firenze: SELCA.

    Google Scholar 

  • Ducci, D., & Sellerino, M. (2012). Natural background levels for some ions in groundwater of the Campania region (southern Italy). Environmental Earth Sciences, 67, 683–693. https://doi.org/10.1007/s12665-011-1516-8.

    Article  CAS  Google Scholar 

  • ENEA, Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile, (2002), Progetto regi lagni, Vol. 2-Stato della qualità delle acque. available online at: http://www.bologna.enea.it/ambtd/regi-lagni/volume-2/3-vol2-ac_sot.html

  • El Fadel, M., Tomaszkiewicz, M., Adra, Y., Sadek, S., & Najm, M. A. (2014). GIS-based assessment for the development of a groundwater quality index towards sustainable aquifer management. Water Resources Management, 28, 3471–3487. https://doi.org/10.1007/s11269-014-0683-2.

    Article  Google Scholar 

  • Eymold, W. K., Swana, K. , Moore, M. T., Whyte, C. J., Harkness, J. S., Talma, S. , Murray, R. , Moortgat, J. B., Miller, J. , Vengosh, A. and Darrah, T. H. (2018), Hydrocarbon‐Rich Groundwater above Shale‐Gas Formations: A Karoo Basin Case Study. Groundwater, 56: 204–224. https://doi.org/10.1111/gwat.12637

    Article  CAS  Google Scholar 

  • Gambardella, B., Marini, L., & Maneschi, I. (2005). Dissolved potassium in the shallow groundwaters circulating in the volcanic rocks of central-southern Italy. Applied Geochemistry, 20, 875–897. https://doi.org/10.1016/j.apgeochem.2004.12.001.

    Article  CAS  Google Scholar 

  • Giaccio, B., Hajdas, I., Isaia, R., Deino, A., & Nomade, S. (2017). High-precision 14C and 40Ar/39Ar dating of the Campanian Ignimbrite (Y-5) reconciles the time-scales of climatic-cultural processes at 40 ka. Scientific Reports, 7(1). https://doi.org/10.1038/srep45940.

  • Gonzalez-Fernandez, O., Queralt, I., Carvalho, M. L., & Garcia, G. (2011). Lead, zinc, arsenic and copper pollution in the alluvial plain of a mining wadi: the Beal case (Cartagena-la union mining district, SE Spain). Water, Air, & Soil Pollution, 220(1–4), 279–291. https://doi.org/10.1007/s11270-011-0753-5.

    Article  CAS  Google Scholar 

  • Harkness, J. S., Swana, K., Eymold, W. K., Miller, J., Murray, R., Talma, S., Whyte, C. J., Moore, M. T., Maletic, E., Vengosh, A., & Darrah, T. H. (2018). Baseline groundwater geochemistry in the Karoo Basin, South Africa. Groundwater, 56(2). https://doi.org/10.1111/gwat.12635.

    Article  CAS  Google Scholar 

  • Kazakis, N., Oikonomidis, D., & Voudouris, K. (2015). Groundwater vulnerability and pollution risk assessment with disparate models in karstic, porous and fissured rock aquifers using remote sensing techniques and GIS in Anthemountas basin Greece. Environmental Earth Sciences, 74(7), 6199–6209. https://doi.org/10.1007/s12665-015-4641-y.

    Article  Google Scholar 

  • Khan, H. H., Khan, A., Ahmed, S., & Perrin, J. (2011). GIS-based impact assessment of land-use changes on groundwater quality: study from a rapidly urbanizing region of South India. Environment and Earth Science, 63, 1289–1302. https://doi.org/10.1007/s12665-010-0801-2.

    Article  Google Scholar 

  • Kouli, M., Lydakis-Simantiris, N., Soupios, P. 2008, 4th quarter. GIS-based aquifer modeling and planning using integrated geoenvironmental and chemical approaches. In: Groundwater: modeling, management, and contamination. König LF, Weiss JL (eds) Nova Publishers, USA.

  • Lasagna, M., De Luca, D. A., & Franchino, E. (2018). Intrinsic groundwater vulnerability assessment: issues, comparison of different methodologies and correlation with nitrate concentrations in NW Italy. Environment and Earth Science, 77(7), 1–16. https://doi.org/10.1007/s12665-018-7452-0.

    Article  CAS  Google Scholar 

  • Li, Y., Zhang, Z., Fei, Y., Chen, H., Qian, Y., & Dun, Y. (2016). Investigation of quality and pollution characteristics of groundwater in the Hutuoriver alluvial plain, North China plain. Environment and Earth Science, 75(7), 1–10. https://doi.org/10.1007/s12665-016-5366-2.

    Article  CAS  Google Scholar 

  • Lumb, A., Sharma, T. C., & Bibeault, J. F. (2011). A review of genesis and evolution of water quality index (WQI) and some future directions. Water Quality Exposure and Health, 3(1), 11–24. https://doi.org/10.1007/s12403-011-0040-0.

    Article  Google Scholar 

  • Machiwal, D., Jha, M. K., & Mal, B. C. (2011). GIS-based assessment and characterization of groundwater quality in a hardrock hilly terrain of Western India. Environmental Monitoring and Assessment, 174, 645–663. https://doi.org/10.1007/s10661-0101485-5.

    Article  CAS  Google Scholar 

  • Mastrocicco, M., Colombani, N., & Palpacelli, S. (2009). Fertilizers mobilization in alluvial aquifer: laboratory experiments. Environmental Geology, 56(7), 1371–1381. https://doi.org/10.1007/s00254-008-1232-1.

    Article  CAS  Google Scholar 

  • Mastrocicco, M., Colombani, N., Palpacelli, S., & Castaldelli, G. (2011). Large tank experiment on nitrate fate and transport: the role of permeability distribution. Environmental Earth Sciences, 63(5), 903–914. https://doi.org/10.1007/s12665-010-0759-0.

    Article  CAS  Google Scholar 

  • Mastrocicco, M., Busico, G., & Colombani, N. (2019). Deciphering interannual temperature variations in springs of the Campania region (Italy). Water (Switzerland)., 11(2). https://doi.org/10.3390/w11020288.

    Article  CAS  Google Scholar 

  • Matzeu, A., Secci, R., & Uras, G. (2017). Methodological approach to assessment of groundwater contamination risk in an agricultural area. Agricultural Water Management, 184, 46–58. https://doi.org/10.1016/j.agwat.2017.01.003

    Article  Google Scholar 

  • MIPAAF. Agrometeorological Online Database. 2018. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/7012.

  • Misstear, B., Banks, D., & Clark, L. (2006). Appendix 3 FAO irrigation water quality guidelines. Chichester: Water wells and boreholes. John Wiley & Sons, Ltd.

    Book  Google Scholar 

  • Mohebbi, M. R., Saeedi, R., Montazeri, A., Vaghefi, K. A., Labbafi, S., Oktaie, S., Abtahi, M., & Mohagheghian, A. (2013). Assessment of water quality in groundwater resources of Iran using a modified drinking water quality index (DWQI). Ecological Indicators, 30, 28–34. https://doi.org/10.1016/j.ecolind.2013.02.008.

    Article  CAS  Google Scholar 

  • National Research Council. (1993). Groundwater vulnerability assessment, contamination potential under conditions of uncertainty. In Committee on techniques for assessing ground water vulnerability, water science and technology board, commission on geosciences environment and resources. Washington: NationalAcademy Press.

    Google Scholar 

  • Pisciotta, A., Cusimano, G., & Favara, R. (2015). Groundwater nitrate risk assessment using intrinsic vulnerability methods: a comparative study of environmental impact by intensive farming in the Mediterranean region of Sicily Italy. Journal of Geochemical Exploration, 156, 89–100. https://doi.org/10.1016/j.gexplo.2015.05.002.

    Article  CAS  Google Scholar 

  • Rezza, C., Albanese, S., Ayuso, R., Lima, A., Sorvari, J., & De Vivo, B. (2018). Geochemical and Pb isotopic characterization of soil, groundwater, human hair, and corn samples from the Domizio Flegreo and Agro Aversano area (Campania region, Italy). Journal of Geochemical Exploration, 184, 318–332. https://doi.org/10.1016/j.gexplo.2017.01.007.

    Article  CAS  Google Scholar 

  • Rolandi, G., Bellucci, F., Heizler, M. T., Belkin, H. E., & De Vivo, B. (2003). Tectonic controls on the genesis of ignimbrites from the Campanian volcanic zone, southern Italy. Mineralogy and Petrology, 79(1–2), 3–31. https://doi.org/10.1007/s00710-003-0014-4.

    Article  CAS  Google Scholar 

  • Singh, S., Ghosh, N. C., Gurjar, S., Krishan, G., Kumar, S., & Berwal, P. (2018). Index-based assessment of suitability of water quality for irrigation purpose under Indian conditions. Environmental Monitoring and Assessment, 190, 29–14. https://doi.org/10.1007/s10661-017-6407-3.

    Article  CAS  Google Scholar 

  • Thivya, C., Chidambaram, S., Singaraja, C., Thilagavathi, R., Prasanna, M. V., & Jainab, I. (2013). Study on the significance of lithology in ground-water quality of Madurai district, Tamil Nadu (India). Environment, Development and Sustainability, 15(5), 1365–1387. https://doi.org/10.1007/s10668-013-9439-z.

    Article  Google Scholar 

  • Vadiati, M., Asghari-Moghaddam, A., Nakhaei, M., Adamowski, J., & Akbarzadeh, A. H. (2016). A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices. Journal of Environmental Management, 184, 255–270. https://doi.org/10.1016/j.jenvman.2016.09.082.

    Article  CAS  Google Scholar 

  • Viaroli, S., Mastrorillo, L., Lotti, F., Paolucci, V., & Mazza, R. (2018). The groundwater budget: a tool for preliminary estimation of the hydraulic connection between neighboring aquifers. Journal of Hydrology, 556, 72–86. https://doi.org/10.1016/j.jhydrol.2017.10.066.

    Article  Google Scholar 

  • WHO, World Health Organization, 2017 Guidelines for drinking-water quality, 4thedn. Incorporating the first addendum. WHO, Geneva, Switzerland. 145–220.

  • Zhang, Y., Weissmann, G., Fogg, G., Lu, B., Sun, H., & Zheng, C. (2018). Assessment of groundwater susceptibility to non-point source contaminants using three-dimensional transient indexes. International Journal of Environmental Research and Public Health, 15(6), 1177. https://doi.org/10.3390/ijerph15061177.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Professor Roberto Ligrone is acknowledged for the English and paragraphs revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Busico.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4601 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rufino, F., Busico, G., Cuoco, E. et al. Evaluating the suitability of urban groundwater resources for drinking water and irrigation purposes: an integrated approach in the Agro-Aversano area of Southern Italy. Environ Monit Assess 191, 768 (2019). https://doi.org/10.1007/s10661-019-7978-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7978-y

Keywords

Navigation