Skip to main content

Advertisement

Log in

Biomonitoring of environmental pollution in the vicinity of iron and steel smelters in southwestern Nigeria using transplanted lichens and mosses

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study identified specific emission sources of atmospheric pollution in the vicinity of two secondary iron and steel smelting factories in Osun state, southwestern Nigeria, using transplanted biomonitors. A total of 120 biomonitors consisting of lichen and moss were grown under a controlled environment and later transplanted to the surroundings of each factory for monitoring of air pollutants for 3 months in both wet and dry seasons. The elemental contents (K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb and Sr) of the biomonitors were determined by X-ray florescence (XRF) spectroscopy. The source identification was performed by applying positive matrix factorization (PMF) receptor modelling approach using the elemental data set from the two smelters. Among the measured elements, Fe had the highest average concentration in the lichen and moss samples as well as in both seasons. The average concentrations of Co, Ni, Cu, Zn, As and Br were low. The varying average elemental concentrations of lichen and moss reflect the pattern of impact of smelting on atmospheric airborne pollution around the factories. The four factors resolved by PMF and their respective contributions were metal processing (39.0%), Fe source (28.0%), crustal/soil (22.0%) and road dust (11.0%) for moss and Fe source (34.0%), crustal/soil (26.0%), coal combustion (25.0%) and road dust (15.0%) for lichen. The study showcases lichen and moss as cheaper and yet efficient uninterrupted monitoring tools of air pollution sources associated with iron and steel smelting industrial activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida, S. M., Lage, J., Freitas, M. C., Pedro, A. N., Ribeiro, T., Silva, A. V., Canha, N., Almeida, S. M., Sitoe, T., Dionisio, I., Garcia, S., Domingues, G., Faria, G. P., Fernndez, B. G., Ciaparra, D., & Wolterbeek, H. T. (2012). Integration of biomonitoring and instrumental techniques to assess the air quality in an industrial area located in the coastal of central Asturias, Spain. Journal of Toxicology and Environmental Health, Part A: Current Issues, 75(22-23), 1392–1403.

    CAS  Google Scholar 

  • Almeida, S. M., Lage, J., Fernndez, B., Garcia, S., Reis, S. M., & Chaves, P. C. (2015). Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry. Science of the Total Environment, 521, 411–420.

    Google Scholar 

  • Boamponsem, L. K., Adam, J. I., Dampare, S. B., Nyarko, B. J. B., & Essumang, D. K. (2010). Assessment of atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana using epiphytic lichens. Nuclear Instruments and Methods in Physics Research B, 268, 1492–1501.

    CAS  Google Scholar 

  • Comero, S., Vaccaro, S., Giovanni, L., Capitani, D. L., & Gawlik, B. M. (2014). Characterization of the Danube River sediments using PMF multivariate approach. Chemosphere, 95, 329–335.

    CAS  Google Scholar 

  • Dai, Q. L., Bi, X. H., Wu, J. H., Zhang, Y. F., Wang, J., Xu, H., & Yao, L. (2015). Characterization and source identification of heavy metals on ambient PM 10 and PM 2.5 in an integrated iron and steel industry zone compared with a background site. Aerosol and Air Quality Research, 15, 875–887. https://doi.org/10.4209/aaqr.214.09.026.

    Article  CAS  Google Scholar 

  • Fang, Y., Chen, Y., Tian, C., Lin, T., Hu, L., Li, J., & Zhang, G. (2016). Application of PMF receptor model merging with PAHs signatures for source apportionment of black carbon in the continental shelf surface sediments of the Bohai and Yellow Seas, China. Journal of Geophysical Reserach and Oceanography, 121, 1346–1359.

    Google Scholar 

  • Figueroa, D. A., Rodrıguez-Sierra, C. J., & Jimenez-Velez, B. D. (2006). Concentrations of Ni and V, other heavy metals, arsenic, elemental and organic carbon in atmospheric fine particles(PM2.5) from Puerto Rico. Toxicology and Industrial Health, 22, 87–99.

    CAS  Google Scholar 

  • Gu, Y. G., Lin, Q., & Gao, Y. P. (2016). Metals in exposed-lawn soils from 18 urban parks and its human health implications in southern China’s largest city, Guangzhou. Journal of Cleaner Production, 115, 122–129.

    Google Scholar 

  • Hleis, D., Fernandez-Olmo, I., Ledoux, K., Kfoury, A., Courcot, L., Desmonths, T., & Courcot, D. (2013). Chemical Profile identification of fugitive and confined particles emissions fron iron and steelmaking plant. Journal of Hazardous Materials, 250–251, 246–255.

    Google Scholar 

  • Hopke, K. P., & Cohen, D. D. (2011). Application of receptor modeling methods. Atmospheric Pollution Research, 2, 122–125.

    Google Scholar 

  • Hu, W., Wang, H., Dong, L., Huang, B., Borggaard, O. L., Hansen, H. C. B., He, Y., & Holm, P. E. (2018). Source identification of heavy metals in peri-urban agricultural soils of southeast China: an integrated approach. Environmental Pollution, 237, 650–661.

    CAS  Google Scholar 

  • Jiang, Y., Chao, S., Liu, J., Yang, Y., Chen, Y., Zhang, A., & Cao, H. (2017). Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere, 168, 1658–1668.

    CAS  Google Scholar 

  • Kara, M., Hopke, P. K., Dumanoglu, Y., Altiok, H., Elbir, T., Obadasi, M., & Bayram, A. (2015). Characterization of PM using multiple site data in a heavily industrialized region of Turkey. Aerosol and Air Quality Research, 15, 11–27.

    CAS  Google Scholar 

  • Karadede, A. H., & Unlu, E. (2007). Heavy metal concentrations in water, sediment, fish and some benthic organisms from Tigris River, Turkey. Environmental Monitoring and Assessment, 131, 323–337.

    Google Scholar 

  • Lage, J., Wolterbeek, H. T., Reis, M. A., Chaves, P. C., Garcia, S., & Almeida, S. M. (2016). Source apportionment by positive matrix factorization on elemental concentration obtained in PM10 and biomonitors collected in the vicinities of a steelworks. Journal of Radioanaltical and Nuclear Chemistry. https://doi.org/10.1007/s10967-016-4751-3.

    CAS  Google Scholar 

  • Landis, M. S., Pancras, J. P., Graney, J. R., White, E. M., Edgertone, E. S., Legge, A., & Percy, K. E. (2017). Source apportionment of ambient fine and coarse particulate matter at the Fort McKay community site, in the Athabasca Oil Sands Region, Alberta, Canada. Science of the Total Environment, 584-585, 105–117.

    CAS  Google Scholar 

  • Li, S., & Zhang, Q. (2011). Response of dissolved trace metals to land use/land cover and their source apportionment using a receptor model in a subtropic river, China. Journal of Hazardous Materials, 190, 205–213.

    CAS  Google Scholar 

  • Li, H., Hopke, P. K., Liu, X., Du, X., & Li, F. (2015). Application of positive matrix factorization to source apportionment of surface water quality of the Daliao River basin, Northeast China. Environmental Monitoring and Assessment, 187, 1–12.

    Google Scholar 

  • Lough, G. C., Schauer, J. J., Park, J. S., Shafer, M. M., DeMinter, J. T., & Weinter, J. P. (2005). Emissions of metals associate with motor vehicle roadways. Environmental Science and Technology, 39, 826–836.

    CAS  Google Scholar 

  • Mohiuddin, K., Strezov, V., Nelson, P., & Stelcer, E. (2014). Characterization of trace metals in atmospheric particles in the vicinity of iron and steelmaking industries in Australia. Atmospheric Environment, 83, 72–79.

    CAS  Google Scholar 

  • Norris, G. A., Duvall, R., Brown, S., & Bai, S. (2014). EPA positive matrix factorization (PMF) 5.0 fundamental and user guide. United States Environmental Protection Agency EPA/600/R-14/108.https://www.epa.gov

  • Odabasi, M., Bayram, A., Elbir, T., Seyfioglu, R., Dumanoglu, Y., & Ornektekin, S. (2010). Investigation of soil concentrations of persistent organic pollutants, trace elements, and anions due to iron-steel plant emissions in an industrial region in Turkey. Water, Air, and Soil Pollution, 213, 375–388.

    CAS  Google Scholar 

  • Ogundele, L. T., Owoade, O. K., Olise, F. S., & Hopke, P. K. (2016). Source identification and apportionment of PM2.5 and PM2.5-10 in iron and steel scrap smelting factory environment using PMF, PCFA and UNMIX receptor models. Environmental Monitoring and Assessment, 188, 574–595.

    Google Scholar 

  • Ogundele, L. T., Owoade, O. K., Hopke, P. K., & Olise, F. S. (2017). Heavy metals in Industrially emitted particulate matter in Ile-Ife, Nigeria. Environmental Research, 156, 320–325.

    CAS  Google Scholar 

  • Ogunjobi, K. O., Kim, J. Y., Adedokun, J. A., Ryu, S. Y., & Kim, J. E. (2002). Analysis of sky condition using solar radiation data at Kwangju and Seoul, South Korea and and Ile-Ife, Nigeria. Theoretical and Appllied Climatology, 72, 265–272.

    Google Scholar 

  • Ohimain, E. I. (2013). Scrap iron and steel recycling in Nigeria. Greener Journal ofEnvironmental Management and Public Safety, 2(1), 001–009.

    Google Scholar 

  • Ohimain, E. I., & Jenakumo, C. F. (2012). Scrap metal recycling and valorization in Bayelsa State, Nigeria. The Journal of Materials Science, 119, 137–147.

    Google Scholar 

  • Owoade, O. K., Olise, F. S., Obioh, I. B., Olaniyi, H. B., Ferrero, L., & Bolzacchini, E. (2009). EDXRF elemental assay of airborne particulates: a case study of an iron and steel industry, Lagos, Nigeria. Scientific Research and Essay, 4(11), 1342–1347.

    Google Scholar 

  • Owoade, O. K., Jegede, O. O., Ayoola, M. A., Fawole, O. G., Bashiru, M. I., Olise, F. S., & Ogundele, L. T. (2013). Concentrations of particulate matter from an iron-smelting plant located along a busy highway in Southwestern Nigeria. IFE Journal of Science, 15(1), 31–39.

    Google Scholar 

  • Owoade, O. K., Hopke, P. K., Olise, F. S., Ogundele, L. T., Fawole, O. G., Olaniyi, H. B., Jegede, O. O., Ayoola, M. A., & Bashiru, M. I. (2015). Chemical compositions and source identification of particulate matter (PM2.5 and PM2.5-10) from a scrap iron and steel smelting industry along the Ife-Ibadan highway, Nigeria. Atmopsheric Pollution Research, 6, 107–119.

    CAS  Google Scholar 

  • Owoade, O. K., Hopke, P. K., Olise, F. S., Adewole, O. O., Ogundele, L. T., & Fawole, O. G. (2016). Source apportionment analyses for fine (PM2.5) and coarse (PM2.5-10) mode particulate matter (PM) measured in an urban area in Southwestern Nigeria. Atmospheric Pollution Research, 7, 843–857.

    Google Scholar 

  • Paatero, P. (1997). Least squares formulation of robust non-negative factor analysis. Chemometrics Intelligence Laboratory System, 37, 23–25.

    CAS  Google Scholar 

  • Paatero, P., & Taaper, U. (1993). Analysis of different modes of factor analysis as least squares fit problem. Chemometrics and Intelligent Laboratory Systems, 18, 183–194.

    CAS  Google Scholar 

  • Paatero, P., & Tapper, U. (1994). Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5, 111–126.

    Google Scholar 

  • Pandey, V., Upreti, D. K., Pathak, R., & Pal, A. (2002). Heavy metal accumulation in lichens from the Hetauda industrial area Narayani zone Makwanpur District, Nepal. Environmental Monitoring and Assessment, 73, 221–228.

    CAS  Google Scholar 

  • Pant, P., & Harrison, R. M. (2012). Critical review of receptor modeling for particulate matter: a case study of India. Atmospheric Environment, 49, 1–12.

    CAS  Google Scholar 

  • Patil, R. S., Kumar, R., Menon, R., Shah, M. K., & Shethi, V. (2013). Development of particulate matter speciation profiles for major sources in six cities in India. Atmospheric Research, 132(3), 1–11.

    Google Scholar 

  • Pekey, H., & Dogan, G. (2013). Application of positive matrix factorization for the source apportionment of heavy metals in the sediments: a comparison with a previous factor analysis study. Microchemical Journal, 103, 233–237.

    Google Scholar 

  • Pekney, N. J., Davidson, C. I., Robinson, A., Zhou, L., Hopke, P. K., Eatough, D., & Rogge, W. F. (2006). Major source categories for PM 2.5 in Pittsburgh using PMF and UNMIX. Aerosol Science and Technology, 40, 910–924.

    CAS  Google Scholar 

  • Polissar, A. V., Hopke, P. K., & Paatero, P. (1998). Atmospheric aerosol over Alaska- 2 Elemental Composition and Sources. Journal of Geophysical Research, 103, 19045–19057.

    CAS  Google Scholar 

  • Rai, P. K. (2016). Impacts of particulate matter pollution on plants: implications for environmental biomonitoring. Ecotoxicology and Environmental Safety, 129, 120–136.

    CAS  Google Scholar 

  • Rodenburg, L. A., Du, S., Xiao, B., & Fennell, D. E. (2011). Source apportionment of polychlorinated biphenyls in the New York/New Jersey Harbor. Chemosphere, 83, 792–798.

    CAS  Google Scholar 

  • Salo, H., Buko, M. S., Vaahtovuo, E., Limo, J., Mkinen, J., & Pesonen, L. J. (2012). Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens. Journal of Geochemical Exploration, 115, 69–81.

    CAS  Google Scholar 

  • Shrivastava, A., & Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2, 21–25.

    Google Scholar 

  • Stihi, C., Popescu, I. V., Frontasyeva, M., Radulescu, C., Ene, A., Culicov, A., Zinicovscaia, I., Dulama, I. D., Cucu-Man, S., Todoran, R., Gheboianu, A. I., Bucurica, A., & Bancuta, I. (2017). Characterization of heavy metal air pollution in Romania using moss biomonitoring, neutron activation analysis, and atomic absorption spectrometry. Analytical Letters. https://doi.org/10.1080/00032719.2016.1275661.

    CAS  Google Scholar 

  • Taiwo, A. M., Beddows, D. C. S., Calzolai, G., Harrison, R. M., Lucarelli, F., Nava, S., Shi, Z., Valli, G., & Vecchi, R. M. (2014a). Receptor modelling of airborne particulate matter in the viccinity of a major steelworks site. Science of the Total Environment, 490, 488–500.

    CAS  Google Scholar 

  • Taiwo, A. M., Harrison, R. M., & Shi, Z. (2014b). A review of receptor modeling of industrially emitted particulate matter. Atmospheric Environment, 97, 109–120.

    CAS  Google Scholar 

  • Taiwo, A. M., Awomeso, J. A., Taiwo, O. T., Oremodu, B. D., Akintunde, O. O., Ojo, N. O., Elegbede, O. O., Olanrewaju, H. H., & Arowolo, T. A. (2017). Assessment of health risks associated with road dusts in major traffic hotspots in Abeokuta metropolis, Ogun state, southwestern Nigeria. Stochastic Environmental Research and Risk Assessment, 31(2), 431–447.

    Google Scholar 

  • Tiwari, S., Sharmsh, P., Perrino, G., Deewan, S. B., Atul, K. S., & Dilip, C. (2013). Chemical charaterization of atmospheric particulate in Delhi, India Part II source apportionment studies using PMF 3.0. Sustainable Environmental Research, 23(5), 295–306.

    Google Scholar 

  • USEPA (2017). Priority pollutant list. https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf. Accessed November 2018

  • Vaccaro, S., Sobieecka, E., Contini, S., Locoro, G., Free, G., & Gawlik, B. M. (2007). The application of positive matrix factorization in the analysis, characterization and detection of contaminated soils. Chomesphere, 69, 1055–1063.

    CAS  Google Scholar 

  • Vitarana, M. C. (2013). Lichens as a biomonitoring tool for detecting heavy metal air pollution associated with industrial activities in Collie, south-western Australia. Retrieved from http://ro.ecu.edu.au/theses/679 Accessed August, 2019.

  • Yang, H. H., Lee, K. T., Hsieh, Y. S., Luo, S. W., & Huang, L. J. (2015). Emission characteristics and chemical compositions of both filterable and condensable fine particulate from steel plants. Aerosol and Air Quality Research, 15, 1672–1680. https://doi.org/10.4209/aaqr.2015.06.0398.

    Article  CAS  Google Scholar 

  • Yu, L., Wang, G., Zhang, L., Song, L., Wu, B., Li, X., An, K., & Chu, J. (2013). Chacterization and source apportionment of PM2.5 in urban environment in Beijing. Aerosol and Air Quality Research, 13, 574–583.

    CAS  Google Scholar 

  • Zhou, K., Chen, Q., Liu, C., & Fang, Y. (2017). Using moss to assess airborne heavy metal pollution in Taizhou, China. International Journal of Environmental Research and Public Health, 14, 430–443.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lasun T. Ogundele.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olise, F.S., Ogundele, L.T., Olajire, M.A. et al. Biomonitoring of environmental pollution in the vicinity of iron and steel smelters in southwestern Nigeria using transplanted lichens and mosses. Environ Monit Assess 191, 691 (2019). https://doi.org/10.1007/s10661-019-7810-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7810-8

Keywords

Navigation