Skip to main content
Log in

Optimization and validation of headspace solid-phase microextraction method coupled with gas chromatography–triple quadrupole tandem mass spectrometry for simultaneous determination of volatile and semi-volatile organic compounds in coking wastewater treatment plant

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Industrial wastewater could be an important source for the emission of volatile (VOCs) and semi-volatile organic compounds (SVOCs), but little is known about it. In this study, a method for the identification and quantitation of 43 VOCs and SVOCs in coking wastewater was developed using a solvent-free equilibrium extraction method on the basis of headspace solid-phase microextraction accompanied by gas chromatography–triple quadrupole tandem mass spectrometry (HS-SPME-GC-MS/MS). To ensure good extraction efficiency, the parameters that have an effect on the HS-SPME-GC-MS/MS process were carefully optimized, in terms of fiber exposure time and temperature, pH, salt additives, sample volume, and desorption time. The HS-SPME method showed good linearity range with coefficients of determination (R2) ≥ 0.991 and achieving a satisfactory recoveries value (70–120%) with good relative standard deviations (RSDs) < 20% (precision). Furthermore, the purposed approach proved to be sensitive with low detection limits, where the values ranged from 0.03 to 3.01 μg/L. The real sample analysis result showed that 43 of VOCs and SVOCs were detected in raw coking wastewater, with 3-cresol as the dominant ones. Further, the method revealed that seven phenols, 11 polycyclic aromatic hydrocarbons, and five BTEX were detected even in the treated effluent. In conclusion, the HS-SPME method developed in this study is simple in sample preparation, convenient, sensitive, and could satisfy the requirement of the analysis of VOCs and SVOCs in coking wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andreu, V., & Pico, Y. (2004). Determination of pesticides and their degradation products in soil: Critical review and comparison of methods. Trends in Analytical Chemistry, 23(10–11), 772–789.

    Article  CAS  Google Scholar 

  • Antoniou, C. V., Koukouraki, E. E., & Diamadopoulos, E. (2006). Determination of chlorinated volatile organic compounds in water and municipal wastewater using headspace–solid phase microextraction–gas chromatography. Journal of Chromatography A, 1132, 310–314.

    Article  CAS  Google Scholar 

  • Atasoy, E., Dögeroglu, T., & Kara, S. (2004). The estimation of NMVOC emissions from an urban-scale wastewater treatment plant. Water Research, 38, 3265–3274.

    Article  CAS  Google Scholar 

  • Aulakh, J. S., Malik, A. K., Varinder Kaur, V., & Schmitt-Kopplin, P. (2005). A review on solid phase micro extraction—high performance liquid chromatography (SPME-HPLC) analysis of pesticides. Critical Reviews in Analytical Chemistry, 35, 71–85.

    Article  CAS  Google Scholar 

  • Baudic, A., Gros, V., Sauvage, S., Locoge, N., Sanchez, O., SardaEstève, R., Kalogridis, C., Petit, J. E., Bonnaire, N., Baisnée, D., Favez, O., Albinet, A., Sciare, J., & Bonsang, B. (2016). Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France). Atmospheric Chemistry and Physics Discussions, 16, 11961–11989.

    Article  CAS  Google Scholar 

  • Blount, B. C., Kobelski, R. J., McElprang, D. O., Ashley, D. L., Morrow, J. C., & Chambers, D. M. (2006). Quantification of 31 volatile organic compounds in whole blood using solid-phase microextraction and gas chromatography–mass spectrometry. Journal of Chromatography B, 832, 292–301.

    Article  CAS  Google Scholar 

  • Burmistrz, P., & Burmistrz, M. (2013). Distribution of polycyclic aromatic hydrocarbons in coke plant wastewater. Water Science & Technology, 68, 2414–2420.

    Article  CAS  Google Scholar 

  • Burmistrz, P., Rozwadowski, A., Burmistrz, M., & Karcz, A. (2014). Coke dust enhance coke plant wastewater treatment. Chemosphere, 117, 278–284.

    Article  CAS  Google Scholar 

  • Cavalcante, R. M., de Andrade, M. V. F., Marins, R. V., & Oliveira, L. D. M. (2010). Development of a headspace-gas chromatography (HS-GC-PID-FID) method for the determination of VOCs in environmental aqueous matrices: Optimization, verification and elimination of matrix effect and VOC distribution on the Fortaleza coast, Brazil. Microchemical Journal, 96, 337–343.

    Article  CAS  Google Scholar 

  • Cervera, M. I., Beltran, J., Lopez, F. J., & Hernandez, F. (2001). Determination of volatile organic compounds in water by head space-solid phase microextraction gas chromatography coupled to tandem mass spectrometry with triple quadrupole analyzer. Analytica Chimica Acta, 704, 87–97.

    Article  Google Scholar 

  • Cho, D., Kong, S., & Oh, S. (2003). Analysis of trihalomethanes in drinking water using headspace-SPME technique with gas chromatography. Water Research, 37, 402–408.

    Article  CAS  Google Scholar 

  • Ciaparra, D., Aries, E., Booth, M. J., Anderson, D. R., Almeida, S. M., & Harrad, S. (2009). Characterisation of volatile organic compounds and polycyclic aromatic hydrocarbons in the ambient air of steelworks. Atmospheric Environment, 43(12), 2070–2079.

    Article  CAS  Google Scholar 

  • Diao, C., Wei, C., & Feng, C. (2012). Rapid determination of benzene derivatives in water samples by trace volume solvent DLLME prior to GC-FID. Chromatographia, 75, 551–555.

    Article  CAS  Google Scholar 

  • Doong, R. A., & Liao, P. L. (2001). Determination of organochlorine pesticides and their metabolites in soil samples using headspace solid-phase microextraction. Journal of Chromatography A, 918, 177–188.

    Article  CAS  Google Scholar 

  • Elmore, J. S., Mottram, D. S., & Hierro, E. (2000). E. Two-fiber solid-phase microextraction combined with gas chromatography–mass spectrometry for the analysis of volatile aroma compounds in cooked pork. Journal of Chromatography A, 905, 233–240.

    Article  Google Scholar 

  • Farhadi, K., Maleki, R., & Tahmasebi, R. (2010). Microextraction of BTEX compounds from water samples using olive oil droplets. Analytical Letters, 43, 349–356.

  • Fatone, F., Di Fabio, S., Bolzonella, D., & Cecchi, F. (2011). Fate of aromatic hydrocarbons in Italian municipal wastewater systems: an overview of wastewater treatment using conventional activated-sludge processes (CASP) and membrane bioreactors (MBRs). Water Research, 45, 93–104.

    Article  CAS  Google Scholar 

  • Fernandez-Martinez, G., Lopez-Mahia, P., Muniategui-Lorenzo, S., Prada-Rodriguez, D., & Fernandez-Fernandez, E. (2001). Distribution of volatile organic compounds during the combustion process in coal-fired power stations. Atmospheric Environment, 35, 5823–5831.

    Article  CAS  Google Scholar 

  • Frena, M., Tonietto, A. E., & Madureira, L. A. S. (2013). Application of solid phase microextraction and gas chromatography for the determination of BTEX in solid petroleum residues. Journal of the Brazilian Chemical Society, 24, 1530–1536.

    CAS  Google Scholar 

  • Green Supply Chain News. (2018). A review of the BP statistical review of world energy, 67 edition.

  • Guo, D., Shi, Q., He, B., & Yuan, X. (2011). Different solvents for the regeneration of the exhausted activated carbon used in the treatment of coking wastewater. Journal of Hazardous Materials, 186, 1788–1793.

    Article  CAS  Google Scholar 

  • Isidorov, V., Vinogorova, V., & Rafałowski, K. (2005). Gas chromatographic determination of extractable compounds composition and emission rate of volatile terpenes from larch needle litter. Journal of Atmospheric Chemistry, 50(3), 263–273.

    Article  CAS  Google Scholar 

  • Kotowska, U., Żalikowski, M., & Isidorov, V. (2012). HS-SPME/GC–MS analysis of volatile and semi-volatile organic compounds emitted from municipal sewage sludge. Environmental Monitoring and Assessment, 184, 2893–2907.

    Article  CAS  Google Scholar 

  • Lai, P., Zhao, H. Z., Zeng, M., & Ni, J. R. (2009). Study on treatment of coking wastewater by biofilm reactors combined with zerovalent iron process. Journal of Hazardous Materials, 162, 1423–1429.

    Article  CAS  Google Scholar 

  • Liu, Y., Shao, M., Fu, L. L., Lu, S., Zeng, L. M., & Tang, D. G. (2008). Source profiles of volatile organic compounds (VOCs) measured in China. Atmospheric Environment, 42(25), 6247–6260.

    Article  CAS  Google Scholar 

  • Liu, Y., Liu, J., Zhang, A., & Liu, Z. (2017). Treatment effects and genotoxicity relevance of the toxic organic pollutants in semi-coking wastewater by combined treatment process. Environmental Pollution, 220, 13–19.

    Article  CAS  Google Scholar 

  • Llomparta, M., Lib, K., & Fingasb, M. (1998). Headspace solid-phase microextraction for the determination of volatile and semi-volatile pollutants in water and air. Journal of Chromatography A, 824, 53–61.

    Article  Google Scholar 

  • Ma, X., Wanga, X., Liua, Y., Gaoa, J., & Wang, Y. (2017). Variations in toxicity of semi-coking wastewater treatment processes and their toxicity prediction. Ecotoxicology and Environmental Safety, 138, 163–169.

    Article  CAS  Google Scholar 

  • Mangani, G., Berloni, A., & Maione, M. (2003). “Cold” solid-phase microextraction method for the determination of volatile halocarbons present in the atmosphere at ultra-trace levels. Journal of Chromatography A, 988, 167–175.

    Article  CAS  Google Scholar 

  • Mirela, M., Naghiu, A., Badea, P., & Fotescu, L. (2010). Comparison of LLE, HS-SPME, DI-SPME extraction methods for screening the volatile compounds in feteasca neagra wine. Journal of Agricultura, 73, 68–76.

    Google Scholar 

  • Moreira dos Santos, C. Y., Azevedo, D. A., & Aquino Neto, F. R. (2004). Atmospheric distribution of organic compounds from urban areas near a coal-fired power station. Atmospheric Environment, 38, 1247–1257.

    Article  CAS  Google Scholar 

  • Pawliszyn, J. (1997). Solid-phase microextraction, theory and practice. New York: Wiley.

    Google Scholar 

  • Rebière, L., Clark, A. C., Schmidtke, L. M., Prenzler, P. D., & Scollary, G. R. (2010). A robust method for quantification of volatile compounds within and between vintages using headspace-solid-phase micro-extraction coupled with GC–MS. Application on Semillon wines. Analytica Chimica Acta, 660, 149–157.

    Article  Google Scholar 

  • Saber, A. N., Malhat, F. M., Badawy, H. M. A., & Barakat, D. A. (2016). Dissipation dynamic, residue distribution and processing factor of hexythiazox in strawberry fruits under open field condition. Food Chemistry, 196, 1108–1116.

    Article  CAS  Google Scholar 

  • Safarova, V. I., Sapelnikova, S. V., Djazhenko, E. V., Teplova, G. I., Shajdulina, G. F., & Kudasheva, F. K. (2004). Gas chromatography-mass spectrometry with headspace for the analysis of volatile organic compounds in wastewater. Journal of Chromatography B, 800, 325–330.

    Article  CAS  Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (1998). Atmospheric chemistry and physics: From air pollution to climate change. Environmental chemistry. Canada: Wiley.

    Google Scholar 

  • Shen, L., Xiang, P., Liang, S., Chen, W., Wang, M., Lu, S., & Wang, Z. (2018). Sources profiles of volatile organic compounds (VOCs) measured in a typical industrial process in Wuhan, Central China. Atmosphere, 9, 1–18.

    Google Scholar 

  • Song, G., Zhu, C., Hu, Y., Chen, J., & Cheng, H. (2013). Determination of organic pollutants in coking wastewater by dispersive liquid–liquid microextraction/GC/MS. Journal of Separation Science, 36, 1644–1651.

    Article  CAS  Google Scholar 

  • Spinhirne, J. P., Koziel, J. A., & Chirase, N. K. (2004). Sampling and analysis of volatile organic compounds in bovine breath by solid-phase microextraction and gas chromatography–mass spectrometry. Journal of Chromatography A, 1025(1), 63–69.

    Article  CAS  Google Scholar 

  • USEPA. (1992). Final background document for COKE production U.S. Environmental Protection Agency OAQPS/TSD/EIB Research Triangle Park.

  • Vineke, J., & Zimmer, J. (2001). VOC emissions from manufacturing processes. Working Report No. 6.

  • Vogelsang, C., Grung, M., Jantsch, T. G., Tollefsen, K. E., & Liltved, H. (2006). Occurrence and removal of selected organic micropollutants at mechanical, chemical and advanced wastewater treatment plants in Norway. Water Research, 40, 3559–3570.

    Article  CAS  Google Scholar 

  • Wang, X. P., Mauzerall, D. L., Hu, Y. T., Russell, A. G., Larson, E. D., Woo, J. H., Streets, D. G., & Guenther, A. (2005). A high-resolution emission inventory for eastern China in 2000 and three scenarios for 2020. Atmospheric Environment, 39, 5917–5933.

    Article  CAS  Google Scholar 

  • Wang, Y., Li, Y., Feng, J., & Sun, C. (2008). Polyaniline-based fiber for headspace solid-phase microextraction of substituted benzenes determination in aqueous samples. Analytica Chimica Acta, 619, 202–208.

    Article  CAS  Google Scholar 

  • Wei, W., Wang, S. X., Chatani, S., Klimont, Z., Cofala, J., & Hao, J. M. (2008). Emission and speciation of nonmethane volatile organic compounds from anthropogenic sources in China. Atmospheric Environment, 42, 4976–4988.

    Article  CAS  Google Scholar 

  • Wu, Z., & Zhu, L. (2012). Removal of polycyclic aromatic hydrocarbons and phenols from coking wastewater by simultaneously synthesized organobentonite in a one-step process. Journal of Environmental Sciences, 24, 248–253.

    Article  CAS  Google Scholar 

  • Yang, L. X. (2012). Study on temporal-spatial characteristic and control strategy of industrial emissions of volatile organic compounds in China. Master’s Thesis, South China University of Technology.

  • Zhang, W., Wei, C., Chai, X., He, J., Cai, Y., Ren, M., & Yan, B. (2012). The behaviors and fate of polycyclic aromatic hydrocarbons (PAHs) in a coking wastewater treatment plant. Chemosphere, 88, 174–182.

    Article  CAS  Google Scholar 

  • Zhang, W., Wei, C., Feng, C., Ren, Y., Hu, Y., Yan, B., & Wu, C. (2013). The occurrence and fate of phenolic compounds in a coking wastewater treatment plant. Water Science & Technology, 68, 433–440.

    Article  CAS  Google Scholar 

  • Zhou, M. (2010). The screening and degradation characteristics study on predominant bacterias to hard-biodegradable organics in coking wastewater, Ph.D. dissertation, Wuhan: Wuhan University of Science and Technology.

Download references

Funding

This work was partially supported by Chinese Academy of Sciences (Grant No. Y273). The first author (A.N. Saber) is financially supported by the CAS-TWAS president’s Fellowship for International Ph.D. Students (CAS-TWAS Fellowship No. 2017CTF086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saber, A.N., Zhang, H. & Yang, M. Optimization and validation of headspace solid-phase microextraction method coupled with gas chromatography–triple quadrupole tandem mass spectrometry for simultaneous determination of volatile and semi-volatile organic compounds in coking wastewater treatment plant. Environ Monit Assess 191, 411 (2019). https://doi.org/10.1007/s10661-019-7554-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7554-5

Keywords

Navigation