Skip to main content

Advertisement

Log in

The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Certain five heavy metals viz. arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb) are non-threshold toxins and can exert toxic effects at very low concentrations. These heavy metals are known as most problematic heavy metals and as toxic heavy metals (THMs). Several industrial activities and some natural processes are responsible for their high contamination in the environment. In recent years, high concentrations of heavy metals in different natural systems including atmosphere, pedosphere, hydrosphere, and biosphere have become a global issue. These THMs have severe deteriorating effects on various microorganisms, plants, and animals. Human exposure to the THMs may evoke serious health injuries and impairments in the body, and even certain extremities can cause death. In all these perspectives, this review provides a comprehensive account of the relative impact of the THMs As, Cd, Cr(VI), Hg, and Pb on our total environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alcantara, E., Romera, F. J., De La Canete, M., & Guardia, M. D. (1994). Effects of heavy metals on both induction and function of root Fe(III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. Journal of Experimental Botany, 45, 1893–1898.

    CAS  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals-concepts and applications. Chemosphere, 91, 869–881.

    CAS  Google Scholar 

  • Ali, M. M., Ali, M. L., Islam, M. S., & Rahman, M. Z. (2016). Preliminary assessment of heavy metals in water and sediment of Karnaphuli River Bangladesh. Environmental Nanotechnology, Monitoring & Management, 5, 27–35.

    Google Scholar 

  • Alloway, B. J. (2013). Introduction. In B. J. Alloway (Ed.), Heavy metals in soils: trace metals and metalloids in soils and their bioavailability (3rd ed., pp. 395–396). New York, USA: Springer.

    Google Scholar 

  • AMAP, (1998) AMAP Assessment Report: Arctic Pollution Issues, Pollution and Human Health.

  • AMAP/UNEP (2013) Technical Background Report for the Global Mercury Assessment 2013. Arctic Monitoring and Assessment Programme, Oslo, Norway/UNEP Chemicals Branch, Geneva, Switzerland.

  • Atchison, G. J., Henry, M. G., & Sandheinrich, M. B. (1987). Effects of metals on fish behavior: a review. Environmental Biology of Fishes, 18, 11–25.

    Google Scholar 

  • ATSDR (1999) Toxicological profile for mercury. http://www.atsdr.cdc.gov/toxprofiles/tp46.pdf

  • ATSDR (2007a) toxicological profile for arsenic. http://www.atsdr.cdc.gov/ToxProfiles/tp2.pdf

  • ATSDR (2007b) Toxicological profile for lead. http://www.atsdr.cdc.gov/toxprofiles/tp13.pdf

  • ATSDR (2012a) Toxicological Profile for Cadmium. http://www.atsdr.cdc.gov/toxprofiles/tp5.pdf

  • ATSDR (2012b) Toxicological profile for chromium. http://www.atsdr.cdc.gov/toxprofiles/tp7.pdf

  • ATSDR (2015) Priority list of hazardous substances. http://www.atsdr.cdc.gov/spl/index.html#modalIdString_myTable2015

    Google Scholar 

  • Babula, P., Adam, V., Opatrilova, R., Zehnalek, J., Havel, L., & Kizek, R. (2008). Uncommon heavy metals, metalloids and their plant toxicity: a review. Environmental Chemistry Letters, 6, 189–213.

    CAS  Google Scholar 

  • Bajpai, R., & Upreti, D. K. (2012). Accumulation and toxic effect of arsenic and other heavy metals in a contaminated area of West Bengal, India, in the lichen Pyxine cocoes (Sw.) Nyl. Ecotoxicology and Environmental Safety, 83, 63–70.

    CAS  Google Scholar 

  • Baker-Austin, A., Wright, M. S., Stepanauskas, R., & McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14, 176–182.

    CAS  Google Scholar 

  • Bakir, F. E. A., Damluji, S. F., Amin-Zaki, L., Murtadha, M., Khalidi, A., al-Rawi, N. Y., Tikriti, S., Dhahir, H. I., Clarkson, T. W., Smith, J. C., & Doherty, R. A. (1973). Methylmercury poisoning in Iraq. Science, 181, 230–241.

    CAS  Google Scholar 

  • Barrera-díaz, C. E., Lugo-lugo, V., & Bilyeu, B. (2012). A review of chemical, electrochemical and biological methods for aqueous Cr ( VI ) reduction. Journal of Hazardous Materials, 223-224, 1–12.

    Google Scholar 

  • Barwick, M., & Maher, W. (2003). Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Marine Environmental Research, 56, 471–502.

    CAS  Google Scholar 

  • Basu, A., Saha, D., Saha, R., Ghosh, T., & Saha, B. (2014). A review on sources, toxicity and remediation technologies for removing arsenic from drinking water. Research on Chemical Intermediates, 40, 447–485.

    CAS  Google Scholar 

  • Benimeli, C. S., Polti, M. A., Albarracín, V. H., Abate, C. M., & Amoroso, M. J. (2011). Bioremediation potential of heavy metal-resistant actinobacteria and maize plants in polluted soil. In M. S. Khan, A. Zaidi, R. Goel, & J. Musarrat (Eds.), Biomanagement of metal-contaminated soils (pp. 459–477). Netherlands: Springer.

    Google Scholar 

  • Berlin, M., Zalups, R. K., & Fowler, B. A. (2007). Mercury. In G. F. Nordberg, B. A. Fowler, M. Nordberg, & L. T. Friberg (Eds.), Handbook on the toxicology of metals (3rd ed.). New York, USA: Elsevier.

    Google Scholar 

  • Bernhoft, R. A. (2012). Mercury toxicity and treatment: a review of the literature. Journal Environmental Public Health, 460508, 10.

    Google Scholar 

  • Bertram, J., Brand, P., Schettgen, T., Lenz, K., Purrio, E., Reisgen, U., & Kraus, T. (2014). Human biomonitoring of chromium and nickel from an experimental exposure to manual metal arc welding fumes of low and high alloyed steel. The Annals of Occupational Hygiene, 59(4), 467–480.

    Google Scholar 

  • Biester, H., Müller, G., & Schöler, H. F. (2002). Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Science of the Total Environment, 284, 191–203.

    CAS  Google Scholar 

  • Blacksmith Institute (2010) World’s worst pollution problems report: top six toxic threats. www.worstpolluted.org/files/.../files/2010/WWPP-2010-Report-Web.pdf

  • Blacksmith Institute (2011) World’s worst toxic pollutions problems report: the top ten of the toxic twenty. www.worstpolluted.org/docs/TopTen2011.pdf

  • Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 40, 1335–1351.

    CAS  Google Scholar 

  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., et al. (2014). Remediation of heavy metal(loid)s contaminated soils- to mobilizeor to immobilize? Journal of Hazardous Materials, 266, 146–164.

    Google Scholar 

  • Bondy, S. C., Anderson, C. L., Harrington, M. E., & Prasad, K. N. (1979). The effects of organic and inorganic lead and mercury on neurotransmitter high-affinity transport and release mechanisms. Environmental Research, 19, 102–111.

    CAS  Google Scholar 

  • Brathwaite, R. L., & Rabone, S. D. C. (1985). Heavy metal sulphide deposits and geochemical surveys for heavy metals in New Zealand. Journal of the Royal Society of New Zealand, 15, 363–370.

    CAS  Google Scholar 

  • Bridges, C. C., & Zalups, R. K. (2005). Molecular and ionic mimicry and the transport of toxic metals. Toxicology and Applied Pharmacology, 204, 274–308.

    CAS  Google Scholar 

  • Bridges, C. C., & Zalups, R. K. (2017). Mechanisms involved in the transport of mercuric ions in target tissues. Archives of Toxicology, 91(1), 63–81.

    CAS  Google Scholar 

  • Bundschuh, J., Litter, M. I., Parvez, F., Román-Ross, G., Nicolli, H. B., Jean, J. S., Liu, C. W., López, D., Armienta, M. A., Guilherme, L. R. G., Cuevas, A. G., Cornejo, L., Cumbal, L., & Toujaguez, R. (2012). One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Science of the Total Environment, 429, 2–35.

    CAS  Google Scholar 

  • Černá, M., Krsková, A., Čejchanová, M., & Spěváčková, V. (2012). Human biomonitoring in the Czech Republic: an overview. International Journal of Hygiene and Environmental Health, 215(2), 109–119.

    Google Scholar 

  • Chakrabarty, D., Trivedi, P. K., Misra, P., Tiwari, M., Shri, M., Shukla, D., et al. (2009). Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere74(5), 688–702.

    CAS  Google Scholar 

  • Chakraborty, M., Mukherjee, A., & Ahmed, K. (2015). A review of groundwater arsenic in the Bengal basin, Bangladesh and India: from source to sink. Current Pollution Report, 1, 220–247.

    CAS  Google Scholar 

  • Chang, F. H., Wang, S. L., Huang, Y. L., Tsai, M. H., Yu, S. T., & Chang, L. W. (2006). Biomonitoring of chromium for residents of areas with a high density of electroplating factories. Journal of Exposure Science & Environmental Epidemiology, 16(2), 138–146.

    CAS  Google Scholar 

  • Chen, J., & Yang, Z. M. (2012). Mercury toxicity, molecular response and tolerance in higher plants. BioMetals, 25, 847–857.

    CAS  Google Scholar 

  • Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212, 475–486.

    CAS  Google Scholar 

  • Clemens, S., Aarts, M. G. M., Thomine, S., & Verbruggen, N. (2013). Plant science: the key to preventing slow cadmium poisoning. Trends in Plant Science, 18, 92–99.

    CAS  Google Scholar 

  • Clemens, S., & Ma, J. F. (2016). Toxic heavy metal and metalloid accumulation in crop plants and foods. Annual Review of Plant Biology, 1–24, 489–512. https://doi.org/10.1146/annurev-arplant-043015-112301.

    Article  CAS  Google Scholar 

  • Das, K., Debacker, V., Pillet, S., Bouquegneau, J.M. (2003) Heavy metals in marine mammals. In: Toxicology of Marine Mammals, (eds Vos JG, Bossart G, Fournier M, O'Shea T) pp. 135–166.

  • De Flora, S. (2000). Threshold mechanisms and site specificity in chromium(VI) carcinogenesis. Carcinogenesis, 21, 533–541.

    Google Scholar 

  • De Souza, M.J., Nair, S., Loka Bharathi, P.A., Chandramohan, D. (2006). Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters. In: Ecotoxicology vol. 15, pp. 379–384.

  • Dhal, B., Thatoi, H. N., Das, N. N., & Pandey, B. D. (2013). Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. Journal of Hazardous Materials, 250-251, 272–291.

    CAS  Google Scholar 

  • Drahota, P., & Filippi, M. (2009). Secondary arsenic minerals in the environment: a review. Environment International, 35, 1243–1255.

    CAS  Google Scholar 

  • Duffus, J. H. (2002). “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure and Applied Chemistry, 74, 793–807.

    CAS  Google Scholar 

  • ENHIS, WHO, (2007) Exposure of children to chemical hazards in food environment and health information system. http://www.euro.who.int/__data/assets/pdf_file/0003/97446/4.4.pdf

  • Ercal, N., Gurer-orhan, H., & Aykin-burns, N. (2001). Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Current Topics in Medicinal Chemistry, 1, 529–539.

    CAS  Google Scholar 

  • EU SCOOP (2004) Assessment of the dietary exposure to arsenic, cadmium, lead and mercury of the population of the EU Member States. Reports on Tasks for Scientific Cooperation. Report of Experts Participating in Task 3.2.11. Directorate-General Health and Consumer Protection, European Commission, Brussels.

  • Fernandes Azevedo, B., Barros Furieri, L., Peçanha, F. M., Wiggers, G. A., Frizera Vassallo, P., Ronacher Simões, M., Fiorim, J., Rossi de Batista, P., Fioresi, M., Rossoni, L., Stefanon, I., Alonso, M. J., Salaices, M., & Valentim Vassallo, D. (2012). Toxic effects of mercury on the cardiovascular and central nervous systems. Journal of Biomedicine & Biotechnology, 2012, 1–11.

    Google Scholar 

  • Finnegan, P. M., & Chen, W. (2012). Arsenic toxicity: the effects on plant metabolism. Frontiers in Physiology, 3, 1–18.

    Google Scholar 

  • Flanagan, S. V., Johnston, R. B., & Zheng, Y. (2012). Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation. Bulletin of the World Health Organization, 90, 839–846.

    Google Scholar 

  • Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: a review with recent updates. Interdisciplinary Toxicology, 5, 47–58.

    CAS  Google Scholar 

  • Flora, S.J.S., Pachauri, V., Saxena, G. (2011) Arsenic, cadmium and lead. Reproductive and developmental toxicology, Academic Press, pp. 415–438.

  • Förstner, U., Wittmann. G.T.W. (2012) Metal pollution in the aquatic environment. Springer Science & Business Media.

  • Friberg, L., Elinder, C., Kjellstrom, T., Nordberg, G.F., (1985) Cadmium and health: a toxicological and epidemiological appraisal volume II: Effects and response.

  • Friberg, L., & Nordberg, G. F. (1972). Mercury in the environment. Boca Raton, Fla, USA: CRC Press.

    Google Scholar 

  • Gadd, G. M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiol, 156, 609–643.

    CAS  Google Scholar 

  • Gadd, G.M., (1994) Interactions of fungi with toxic metals. In: The genus Aspergillus, Springer, US, pp. 361–374.

    Google Scholar 

  • Garg, N., & Singla, P. (2011). Arsenic toxicity in crop plants : physiological effects and tolerance mechanisms. Environmental Chemistry Letters, 9, 303–321.

    CAS  Google Scholar 

  • Garnier, R., Fuster, J.M., Conso, F., Dautzenberg, B., Sors, C., Fournier, E. (1981) Acute mercury vapour poisoning (author’s transl), vol. 3.

  • Giacalone, A., Gianguzza, A., Orecchio, S., Piazzese, D., Dongarra, G., Sciarrino, S., & Varrica, D. (2005). Metals distribution in the organic and inorganic fractions of soil: a case study on soils from Sicily. Chemical Speciation & Bioavailability, 17, 83–93.

    CAS  Google Scholar 

  • Gidlow, D. A. (2015). Lead toxicity. Occupational medicine (Oxford, England), 65, 348–356.

    CAS  Google Scholar 

  • Giller, K. E., Witter, E., & Mcgrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils : a review. Soil Biology and Biochemistry, 30, 1389–1414.

    CAS  Google Scholar 

  • Gomez, O. A. (2008). The evolution of official lessons: the Japanese experience of the 'big four' pollution diseases through the lens of international aid. Journal of Alternative Perspectives in the Social Sciences, 1, 81–100.

    Google Scholar 

  • Gonzalez, A. R., Ndung’u, K., & Flegal, A. R. (2005). Natural occurrence of hexavalent chromium in the Aromas Red Sands aquifer, California. Environmental Science & Technology, 39, 5505–5511.

    CAS  Google Scholar 

  • Gresser, M. J. (1981). ADP-arsenate. Formation by submitochondrial particles under phosphorylating conditions. The Journal of Biological Chemistry, 256, 5981–5983.

    CAS  Google Scholar 

  • Gunawardena, J., Egodawatta, P., Ayoko, G. A., & Goonetilleke, A. (2013). Atmospheric deposition as a source of heavy metals in urban stormwater. Atmospheric Environment, 68, 235–242.

    CAS  Google Scholar 

  • Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53, 1–11.

    CAS  Google Scholar 

  • Hamdi, M., Yoshinaga, M., Packianathan, C., Qin, J., Hallauer, J., McDermott, J. R., et al. (2012). Identification of an S-adenosylmethionine (SAM) dependent arsenic methyltransferase in Danio rerio. Toxicology and Applied Pharmacology, 262(2), 185–193.

    CAS  Google Scholar 

  • Han, Y., Kingston, H. M., Boylan, H. M., Rahman, G. M. M., Shah, S., Richter, R. C., Link, D. D., & Bhandari, S. (2003). Speciation of mercury in soil and sediment by selective solvent and acid extraction. Analytical and Bioanalytical Chemistry, 375, 428–436.

    CAS  Google Scholar 

  • Handlogten, M. E., Shiraishi, N., Awata, H., Huang, C., & Miller, R. T. (2000). Extracellular Ca(2+)-sensing receptor is a promiscuous divalent cation sensor that responds to lead. American J Physiol Ren Physiol, 279, F1083–F1091.

    CAS  Google Scholar 

  • Hashim, J. H., Radzi, R. S. M., Aljunid, S. M., Nur, A. M., Ismail, A., Baguma, D., Sthiannopkao, S., Phan, K., Wong, M. H., Sao, V., & Yasin, M. S. M. (2013). Hair arsenic levels and prevalence of arsenicosis in three Cambodian provinces. Sci Tot Environ, 463-464, 1210–1216.

    CAS  Google Scholar 

  • He, S., He, Z., Yang, X., Stoffella, P. J., & Baligar, V. C. (2015). Chapter four-soil biogeochemistry, plant physiology, and phytoremediation of cadmium-contaminated soils. Advances in Agronomy, 134, 135–225.

    Google Scholar 

  • Heinrichs, H., & Mayer, R. (1980). The role of forest vegetation in the biogeochemical cycle of heavy metals. Journal of Environmental Quality, 9, 111–118.

    CAS  Google Scholar 

  • Henkler, F., Brinkmann, J., & Luch, A. (2010). The role of oxidative stress in carcinogenesis induced by metals and xenobiotics. Cancers, 2, 376–396.

    CAS  Google Scholar 

  • HPA (2010) Cadmium: toxicological overview, Health Protection Agency, United Kingdom, p. 15. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/337542/hpa_cadmium_toxicological_overview_v3.pdf

  • Hu, H. Y., Lin, H., Zheng, W., Tomanicek, S. J., Johs, A., Feng, X., Elias, D. A., Liang, L., & Gu, B. (2013). Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria. Nature Geoscience, 6, 751–754.

    CAS  Google Scholar 

  • Hughes, M. F., Beck, B. D., Chen, Y., Lewis, A. S., & Thomas, D. J. (2011). Arsenic exposure and toxicology: a historical perspective. Toxicological Sciences, 123, 305–332.

    CAS  Google Scholar 

  • Hutchinson, T.C., Meema, K.M. (1987) Lead, mercury, cadmium and arsenic in the environment. John Wiley & Sons Ltd, pp. 69–87.

  • IARC (2019) Agents classified by the IARC monographs, Vol. 1–123.https://monographs.iarc.fr/wp-content/uploads/2018/09/ClassificationsAlphaOrder.pdf

  • ICdA. (2007). Cadmium consumption by end uses. Brussels, Belgium: International Cadmium Association.

    Google Scholar 

  • Jakubowski, M. (2012) Lead. In: Knudsen E, Merlo DF, editors. Biomarkers and human biomonitoring. Volume 1. London: Royal Society of Chemistry, 322–37 (Issues in Toxicology, No.1).

  • Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bullet, 68, 167–182.

    Google Scholar 

  • Järup, L., & Akesson, A. (2009). Current status of cadmium as an environmental health problem. Toxicology and Applied Pharmacology, 238, 201–208.

    Google Scholar 

  • Jezierska, A., Ługowska, K., & Witeska, M. (2009). The effects of heavy metals on embryonic development of fish (a review). Fish Physiology and Biochemistry, 35, 625–640.

    CAS  Google Scholar 

  • Jinbiao, Z., Hanwen, W., Xiangping, W., & Weinan, H. (2010). Subcellular distribution and chemical forms of cadmium in the cells of strawberry (Fragaria ananassa Duch.). The Journal of Horticultural Science and Biotechnology85(6), 563–569.

  • Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151, 362–367.

    CAS  Google Scholar 

  • Kaushik, A., Kansal, A., Kumari, S., & Kaushik, C. P. (2009). Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediments. Journal of Hazardous Materials, 164(1), 265–270.

    CAS  Google Scholar 

  • Kerby, J. L., Richards-Hrdlicka, K. L., Storfer, A., & Skelly, D. K. (2010). An examination of amphibian sensitivity to environmental contaminants: Are amphibians poor canaries? Ecology Letters, 13, 60–67.

    Google Scholar 

  • Keskinkan, O., Goksu, M. Z. L., Basibuyuk, M., & Forster, C. F. (2004). Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresource Technology, 92, 197–200.

    CAS  Google Scholar 

  • Kimbrough, D. E., Cohen, Y., Winer, A. M., Creelman, L., & Mabuni, C. (1999). A critical assessment of chromium in the environment. Critical Reviews in Environmental Science and Technology, 29, 1–46.

    CAS  Google Scholar 

  • Klotz, K., Göen, T. (2017) Human biomonitoring of lead exposure. In Lead–Its Effects on Environment and Health. De Gruyter Berlin, Boston.

  • Kotaś, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107, 263–283.

    Google Scholar 

  • Kruger, M. C., Bertin, P. N., Heipieper, H. J., & Arsène-Ploetze, F. (2013). Bacterial metabolism of environmental arsenic -mechanisms and biotechnological applications. Applied Microbiology and Biotechnology, 97, 3827–3841.

    CAS  Google Scholar 

  • Lee, J. W., Lee, C. K., Moon, C. S., Choi, I. J., Lee, K. J., Yi, S. M., Jang, B. K., jun Yoon, B., Kim, D. S., Peak, D., & Sul, D. (2012). Korea National Survey for Environmental Pollutants in the Human Body 2008: heavy metals in the blood or urine of the Korean population. International Journal of Hygiene and Environmental Health, 215(4), 449–457.

    CAS  Google Scholar 

  • Lenart-Boroń, A., & Boroń, P. (2014). The effect of industrial heavy metal pollution on microbial abundance and diversity in soils–a review. Actinomycetes, 1012, 107–108.

    Google Scholar 

  • Li, P., Feng, X. B., Qiu, G. L., Shang, L. H., & Li, Z. G. (2009). Mercury pollution in Asia: a review of the contaminated sites. Journal of Hazardous Materials, 168, 591–601.

    CAS  Google Scholar 

  • Lindqvist, O., & Rodlhe, H. (1985). Atmospheric mercury: a review. Tellus, 37B, 136–159.

    CAS  Google Scholar 

  • LLC Books, (2010) Cadmium Minerals: Greenockite, Hawleyite, Otavite, Niedermayrite, Cadmoselite, General Books, LLC, p. 20.

  • López, D. L., Bundschuh, J., Birkle, P., Armienta, M. A., Cumbal, L., Sracek, O., Cornejo, L., & Ormachea, M. (2012). Arsenic in volcanic geothermal fluids of Latin America. Science of the Total Environment, 429, 57–75.

    Google Scholar 

  • Madoni, P., Davoli, D., Gorbi, G., & Vescovi, L. (1996). Toxic effect of heavy metals on the activated sludge protozoan community. Water Research, 30, 135–141.

    CAS  Google Scholar 

  • Manara, A. (2012). Plant responses to heavy metal toxicity. In Plants and heavy metals (pp. 27–53). Netherlands: Springer.

    Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58, 201–235.

    CAS  Google Scholar 

  • Martin, M.H. (2012) Biological monitoring of heavy metal pollution: land and air. Springer Science & Business Media.

  • Mathema, V. B., Thakuri, B. C., & Sillanpää, M. (2011). Bacterial mer operon-mediated detoxification of mercurial compounds: a short review. Arc Microbiol, 193, 837–844.

    CAS  Google Scholar 

  • Matschullat, J. (2000). Arsenic in the geosphere– a review. Science of the Total Environment, 249, 297–312.

    CAS  Google Scholar 

  • Moraitou-Apostolopoulou, M., & Verriopoulos, G. (1982). Individual and combined toxicity of three heavy metals, Cu, Cd and Cr for the marine copepod Tisbe holothuriae. Hydrobiologia, 87(1), 83–87.

    CAS  Google Scholar 

  • MRT, (2001) Tasmanian Geological Survey Record 2001/08, A mineralogical field guide for a Western Tasmania minerals and museums tour, Mineral Resources, Tasmania.

  • Mukherjee, A., Sengupta, M. K., Hossain, M. A., et al. (2006). Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. Journal of Health, Population, and Nutrition, 24, 142–163.

    Google Scholar 

  • Muller, D., Médigue, C., Koechler, S., et al. (2007). A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genetics, 3518, 530.

    Google Scholar 

  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8, 199–216.

    CAS  Google Scholar 

  • Navas-Acien, A., Guallar, E., Silbergeld, E. K., & Rothenberg, S. J. (2007). Lead exposure and cardiovascular disease--a systematic review. Environmental Health Perspectives, 115, 472–482.

    CAS  Google Scholar 

  • Ng, J. C., Wang, J., & Shraim, A. (2003). A global health problem caused by arsenic from natural sources. Chemosphere, 52, 1353–1359.

    CAS  Google Scholar 

  • Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51, 730–750.

    CAS  Google Scholar 

  • Norseth, T. (1981). The carcinogenicity of chromium. Environmental Health Perspectives, 40, 121–130.

    CAS  Google Scholar 

  • Nriagu, J. O. (1996). A history of global metal pollution. Science, 272, 223–220.

    CAS  Google Scholar 

  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134–139.

    CAS  Google Scholar 

  • O’Brien, T. J., Ceryak, S., & Patierno, S. R. (2003). Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms. Mutation Research, 533, 3–36.

    Google Scholar 

  • Orlowski, A., & Piotrowski, J. K. (2003). Biological levels of cadmium and zinc in the small intestine of non-occupationally exposed human subjects. Human and Experimental Toxicology, 22, 57–63.

    CAS  Google Scholar 

  • Pacyna, E. G., Pacyna, J. M., Fudala, J., Strzelecka-Jastrzab, E., Hlawiczka, S., Panasiuk, D., Nitter, S., Pregger, T., Pfeiffer, H., & Friedrich, R. (2007). Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe. Atmospheric Environment, 41, 8557–8566.

    CAS  Google Scholar 

  • Papanikolaou, N. C., Hatzidaki, E. G., Belivanis, S., Tzanakakis, G. N., & Tsatsakis, A. M. (2005). Lead toxicity update. A brief review. Medical Science Monitor, 11, RA329–RA336.

    CAS  Google Scholar 

  • Park, J.D., & Zheng, W. (2012). Human exposure and health effects of inorganic and elemental mercury. Journal of Preventive Medicine and Public Health, 45, 344–352.

    Google Scholar 

  • Parrotta, L., Guerriero, G., Sergeant, K., Cai, G., & Hausman, J. F. (2015). Target or barrier? The cell wall of early-and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Frontiers in Plant Science, 6, 133.

  • Patra, M., Bhowmik, N., Bandopadhyay, B., & Sharma, A. (2004). Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany, 52, 199–223.

    CAS  Google Scholar 

  • Paul, D. (2017). Research on heavy metal pollution of river Ganga: a review. Annals of Agricultural Science, 15(2), 278–286.

    Google Scholar 

  • Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G., & Gardea-Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. The International Journal of Biochemistry & Cell Biology, 41, 1665–1677.

    CAS  Google Scholar 

  • Posthuma, L., & Van Straalen, N. M. (1993). Heavy-metal adaptation in terrestrial invertebrates: a review of occurrence, genetics, physiology and ecological consequences. Comparative Biochemistry and Physiology. Part C, Pharmacology, Toxicology & Endocrinology, 106, 11–38.

    Google Scholar 

  • Pure Earth (2015) The new top six toxic threats: a priority list for remediation, World’s worst pollution problems report. http://www.worstpolluted.org/docs/WWPP_2015_Final.pdf

    Google Scholar 

  • Queipo-Abad, S., González, P. R., Martínez-Morillo, E., Davis, W. C., & Alonso, J. I. G. (2019). Concentration of mercury species in hair, blood and urine of individuals occupationally exposed to gaseous elemental mercury in Asturias (Spain) and its comparison with individuals from a control group formed by close relatives. Science of The Total Environment, 672, 314–323.

  • Rastogi, S. K. (2008). Renal effects of environmental and occupational lead exposure. Indian Journal of Occupational and Environmental Medicine, 12, 103–106.

    CAS  Google Scholar 

  • Rasul, S. B., Munir, A. K. M., Hossain, Z. A., Khan, A. H., Alauddin, M., & Hussam, A. (2002). Electrochemical measurement and speciation of inorganic arsenic in groundwater of Bangladesh. Talanta, 58, 33–43.

    CAS  Google Scholar 

  • Ratnaike, R. N. (2003). Acute and chronic arsenic toxicity. Postgraduate Medical Journal, 79, 391–396.

    CAS  Google Scholar 

  • Ravenscroft, P. (2007). Predicting the global extent of arsenic pollution of groundwater and its potential impact on human health. New York: UNICEF.

    Google Scholar 

  • Restriction of Hazardous Substances Directive (2003) Directive 2002/95/EC of the European parliament and of the council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

  • Richardson GM, Garrett R, Mitchell I, Mah-Poulson M, Hackbarth T (2001) Critical review on natural global and regional emissions of six trace metals to the atmosphere. Prepared for the International Lead Zinc Research Organisation, the International Copper Association, and the Nickel Producers Environmental Research Association. https://www.echa.europa.eu/documents/10162/13630/vrar_appendix_p2_en.pdf

  • Rieuwerts, J. S., Thornton, I., Farago, M. E., & Ashmore, M. R. (1998). Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation and Bioavailability, 10, 61–75.

    CAS  Google Scholar 

  • Robles-Camacho, J., & Armienta, M. A. (2000). Natural chromium contamination of groundwater at Leon Valley, Mexico. Journal of Geochemical Exploration, 68, 167–181.

    CAS  Google Scholar 

  • Rosen, B. P. (2002). Biochemistry of arsenic detoxification. Science, 529, 86–92.

    CAS  Google Scholar 

  • Sabry, S. A., Ghozlan, H. A., & Abou-Zeid, D. M. (1997). Metal tolerance and antibiotic resistance patterns of a bacterial population isolated from sea water. Journal of Applied Microbiology, 82, 245–252.

    CAS  Google Scholar 

  • Saha, J. C., Dikshit, a. K., Bandyopadhyay, M., & Saha, K. C. (1999). A review of arsenic poisoning and its effects on human health. Critical Reviews in Environmental Science and Technology, 29, 281–313.

    CAS  Google Scholar 

  • Salati, S., & Moore, F. (2010). Assessment of heavy metal concentration in the Khoshk River water and sediment, Shiraz, Southwest Iran. Environmental Monitoring and Assessment, 164(1–4), 677–689.

    CAS  Google Scholar 

  • Sandaa, R. A., Enger, Ø., & Torsvik, V. (1999). Abundance and diversity of Archaea in heavy-metal-contaminated soils. Applied and Environmental Microbiology, 65, 3293–3297.

    CAS  Google Scholar 

  • Sandaa, R. A., Torsvik, V., & Enger, O. (2001). Influence of long-term heavy-metal contamination on microbial communities in soil. Soil Biology and Biochemistry, 33, 287–295.

    CAS  Google Scholar 

  • Schroeder, W. H., & Munthe, J. (1998). Atmospheric mercury- an overview. Atmospheric Environment, 32, 809–822.

    CAS  Google Scholar 

  • Schützendübel, A., & Polle, A. (2002). Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Experi Bot, 53, 1351–1365.

    Google Scholar 

  • Sengar, R. S., Gautam, M., Sengar, R. S., Garg, S. K., Sengar, K., & Chaudhary, R. (2008). Lead stress effects on physiobiochemical activities of higher plants. Reviews of Environmental Contamination and Toxicology, 196, 73–93.

    CAS  Google Scholar 

  • Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., Dumat, C., & Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere, 178, 513–533.

    CAS  Google Scholar 

  • Sharma, V. K., & Sohn, M. (2009). Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environment International, 35(4), 743–759.

    CAS  Google Scholar 

  • Sheik, C. S., Mitchell, T. W., Rizvi, F. Z., Rehman, Y., Faisal, M., Hasnain, S., McInerney, M. J., & Krumholz, L. R. (2012). Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS One, 7, e40059.

    CAS  Google Scholar 

  • Singh, R., Singh, S., Parihar, P., Singh, V. P., & Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicology and Environmental Safety, 112, 247–270.

    CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    CAS  Google Scholar 

  • Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bulletin of the World Health Organization, 78, 1093–1103.

    CAS  Google Scholar 

  • Stanin FT, Pirnie M. (2005) The Transport and Fate of Cr (VI) in the Environment, Chromium (VI) Handbook, Boca Ratón, Florida (USA), CRC Press, pp. 162–211.

  • Suresh Kumar, K., Dahms, H. U., Lee, J. S., Kim, H. C., Lee, W. C., & Shin, K. H. (2014). Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicology and Environmental Safety, 104, 51–71.

    CAS  Google Scholar 

  • Tchounwou, P. B., Ayensu, W. K., Ninashvili, N., & Sutton, D. (2003). Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental Toxicology, 18, 149–175.

    CAS  Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular Clinical Environmental Toxicology, 101, 133–164.

    Google Scholar 

  • Thakur, B. K., Gupta, V., & Chattopadhyay, U. (2013). Arsenic groundwater contamination related socio-economic problems in India: issues and challenges. In Knowledge Systems of Societies for Adaptation and Mitigation of Impacts of Climate Change (pp. 163–182). Berlin Heidelberg: Springer.

    Google Scholar 

  • Thomas, D. J., Li, J., Waters, S. B., Xing, W., et al. (2007). Arsenic (+ 3 oxidation state) methyltransferase and the methylation of arsenicals. Experimental Biology and Medicine, 232, 3–13.

    CAS  Google Scholar 

  • Thompson, C. M., Haws, L. C., Harris, M. A., Gatto, N. M., & Proctor, D. M. (2011). Application of the US EPA mode of action framework for purposes of guiding future research: a case study involving the oral carcinogenicity of hexavalent chromium. Toxicological Sciences, 119, 20–40.

    CAS  Google Scholar 

  • Tyler, G., Påhlsson, A. M. B., Bengtsson, G., Bååth, E., & Tranvik, L. (1989). Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates- a review. Water, Air, and Soil Pollution, 47, 189–215.

    CAS  Google Scholar 

  • Ullrich, S. M., Tanton, T. W., & Abdrashitova, S. A. (2001). Mercury in the aquatic environment: a review of factors affecting methylation. Critical Reviews in Environmental Science and Technology, 31, 241–293.

    CAS  Google Scholar 

  • UNEP (1985) Cadmium, lead and tin in the marine environment. http://www.unep.org/regionalseas/publications/reports/RSRS/pdfs/rsrs056.pdf

  • UNEP (2010a) Analysis of trade flows and review of environmentally sound management practices related to products containing cadmium, lead, and mercury in Latin America and the Caribbean. http://www.unep.org/chemicalsandwaste/Portals/9/Lead_Cadmium/docs/Trade_Reports/LAC/Trade_report_LAC_English.pdf

  • UNEP (2010b) Final review of scientific information on cadmium. http://www.unep.org/chemicalsandwaste/Portals/9/Lead_Cadmium/docs/Interim_reviews/UNEP_GC26_INF_11_Add_2_Final_UNEP_Cadmium_review_and_apppendix_Dec_2010.pdf

    Google Scholar 

  • UNEP (2010c) Final review of scientific information on lead. http://www.unep.org/chemicalsandwaste/Portals/9/Lead_Cadmium/docs/Interim_reviews/UNEP_GC26_INF_11_Add_1_Final_UNEP_Lead_review_and_apppendix_Dec_2010.pdf

    Google Scholar 

  • US EPA (2012) Summary of maximum allowable concentrations of chemical constituents in uncontaminated soil used as fill material at regulated fill operations (35 Ill. Adm. Code 1100.Subpart F). http://www.epa.state.il.us/land/ccdd/new-max-allowable-concentrations-table.pdf

  • US EPA (2016) Drinking water contaminants– standards and regulations. https://www.epa.gov/your-drinking-water/table-regulated-drinking-water-contaminants

  • USGS (2016) Mineral commodity summaries 2016, U.S. Geological Survey. http://minerals.usgs.gov/minerals/pubs/mcs/2016/mcs2016.pdf

  • USGS (2013) Mineral commodity summaries 2013, U.S. Geological Survey. http://minerals.usgs.gov/minerals/pubs/mcs/2013/mcs2013.pdf.

  • Vahidnia, A., van der Voet, G. B., & de Wolff, F. A. (2007). Arsenic neurotoxicity--a review. Human and Experimental Toxicology, 26, 823–832.

    CAS  Google Scholar 

  • Valko, M., Morris, H., & Cronin, M. T. D. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12, 1161–1208.

    CAS  Google Scholar 

  • Violante, A., Cozzolino, V., Perelomov, L., Caporale, A., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10, 268–292.

    Google Scholar 

  • Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of Earth’ s ecosystems. Science, 277, 494–499.

    CAS  Google Scholar 

  • Wang, H., Wu, Q., Hu, W., Huang, B., Dong, L., & Liu, G. (2018). Using multi-medium factors analysis to assess heavy metal health risks along the Yangtze River in Nanjing, Southeast China. Environmental Pollution, 243, 1047–1056.

    CAS  Google Scholar 

  • Wang, Q., Kim, D., Dionysiou, D. D., Sorial, G. A., & Timberlake, D. (2004). Sources and remediation for mercury contamination in aquatic systems - a literature review. Environmental Pollution, 131, 323–336.

    Google Scholar 

  • Wenzel WW (2013) Arsenic. In: Heavy metals in soils: trace metals and metalloids in soils and their bioavailability, (ed. Alloway BJ), 3rd edn., Springer, New York, pp. 241–282.

    Google Scholar 

  • Whitfield, C. L., Ch’ien, L. T., & Whitehead, J. D. (1972). Lead encephalopathy in adults. The American Journal of Medicine, 52, 289–298.

    CAS  Google Scholar 

  • WHO (2005) Air quality guidelines for Europe. European series, no. 912nd edition. WHO regional publications.

  • WHO (2008) Guidelines for Drinking-Water Quality, 3rd edition incorporating 1st and 2nd addenda. Vol. 1. Recommendations. pp. 392–394. http://www.who.int/water_sanitation_health/dwq/GDW12rev1and2.pdf

  • WHO (2010a) Exposure to cadmium: a major public health concern. http://www.who.int/ipcs/features/cadmium.pdf.

  • WHO (2010b) Exposure to lead: a major public health concern. http://www.who.int/ipcs/features/lead..pdf

  • WHO (2018) Lead poisoning and health. https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health

  • Wu, G., Kang, H., Zhang, X., Shao, H., Chu, L., & Ruan, C. (2010). A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials, 174, 1–8.

    CAS  Google Scholar 

  • Wu, Q., Leung, J. Y., Geng, X., Chen, S., Huang, X., Li, H., Huang, Z., Zhu, L., Chen, J., & Lu, Y. (2015). Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals. Science of the Total Environment, 506, 217–225.

    Google Scholar 

  • Xiao, R., Wang, S., Li, R., Wang, J. J., & Zhang, Z. (2017). Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicology and Environmental Safety, 141, 17–24.

    CAS  Google Scholar 

  • Xu, J., Bravo, A. G., Lagerkvist, A., Bertilsson, S., Sjöblom, R., & Kumpiene, J. (2015). Sources and remediation techniques for mercury contaminated soil. Environment International, 74, 42–53.

    CAS  Google Scholar 

  • Zeb, B., Ping, Z., Mahmood, Q., Lin, Q., Pervez, A., Irshad, M., Bilal, M., Bhatti, Z. A., & Shaheen, S. (2017). Assessment of combined toxicity of heavy metals from industrial wastewaters on Photobacterium phosphoreum T3S. Applied Water Science, 7(4), 2043–2050.

    CAS  Google Scholar 

  • Zhou, Q., Gu, Y., Yue, X., Mao, G., Wang, Y., Su, H., Xu, J., Shi, H., Zou, B., Zhao, J., & Wang, R. (2017). Combined toxicity and underlying mechanisms of a mixture of eight heavy metals. Molecular Medicine Reports, 15(2), 859–866.

    CAS  Google Scholar 

Download references

Acknowledgements

ZR is thankful to the Council of Scientific and Industrial Research (CSIR) for the award of JRF and SRF.

Funding

This work was financially supported by the R&D grant, University of Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeeshanur Rahman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 3 Characteristics of THMs (physical properties and their maximum permissible limits in different natural systems)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, Z., Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ Monit Assess 191, 419 (2019). https://doi.org/10.1007/s10661-019-7528-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7528-7

Keywords

Navigation