Skip to main content
Log in

Impact of mining on metal concentration in waters of the Zuari estuary, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The rationale of the current study was to establish that mining and associated activities are the chief sources of trace metal contamination in the Zuari estuary, Goa. Surface and bottom water samples were collected monthly, at 11 stations, starting from the mouth of the estuary, covering a stretch of 35 km towards the head during the period of ban on mining in Goa as per the directions of the Honourable Supreme Court of India. The water samples were analysed for physicochemical parameters and metals (Fe, Mn, Zn, Cr, Cu and Pb). Spatial variation of metals (Zn, Cr and Cu) indicated high concentrations at the mouth region, revealing that they are derived by resuspension of bottom sediments at higher salinities, while metals Fe, Mn and Pb showed higher concentrations at the head region, indicating that these are derived from freshwater discharge. Seasonal variation of metals revealing high concentrations during non-monsoonal months was attributed to a high rate of evaporation and intense anthropogenic activities except Pb. Contamination factors and enrichment factors of metals were calculated to assess the degree of metal contamination and relative abundance of pollutants, respectively. Sources of metals into the estuary were discussed by using principal component analysis. Correlation coefficients were calculated to find out the dynamics among the physicochemical factors and trace metals. The study exemplified that concentrations of trace metals in waters of the Zuari estuary were significantly less when compared to the periods of rampant mining activity around Goa, indicating that mining can influence the concentration of metals in the Zuari estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adaikpoh, E. O., Nwajei, G. E., & Oglala, J. E. (2005). Heavy metals concentrations in coal and sediments from river Ekulu in Enugu, Coal City of Nigeria. J Appl Sci Environ Manag, 9(3), 5–8.

    Google Scholar 

  • Akcay, H., Oguz, A., & Karapire, C. (2003). Study of heavy metal pollution and speciation in Buyak Menderes and Gediz River sediments. Water Res, 37, 813–822. https://doi.org/10.1016/S0043-1354(02)00392-5.

    Article  CAS  Google Scholar 

  • Akoto, O., Bruce, T. N., & Darko, G. (2008). Heavy metals pollution profiles in streams serving the Owabi reservoir. Afr J Environ Sci Technol, 2(11), 354–359.

    Google Scholar 

  • Alagarsamy, R. (1991). Organic carbon in the sediments of Mandovi estuary. Goa Indian J Mar Sci, 20, 221–222 http://drs.nio.org/drs/handle/2264/3240.

    CAS  Google Scholar 

  • Alagarsamy, R. (2006). Distribution and seasonal variation of trace metals in surface sediments of the Mandovi estuary, west coast of India. Estuar Coast Shelf Sci, 67, 333–339. https://doi.org/10.1016/j.ecss.2005.11.023.

    Article  CAS  Google Scholar 

  • Anas, A., Jasmin, C., Sheeba, V. A., Gireeshkumar, T. R., & Nair, S. (2015). Heavy metals pollution influence the community structure of cyanobacteria in nutrient rich tropical estuary. Oceanography, 3, 1–8. https://doi.org/10.4172/2332-2632.1000137.

    Article  Google Scholar 

  • Ankley, G. T., Did Toro, D. M., Hansen, D. J., & Berry, W. J. (1996). Technical basis and proposal for deriving water quality metals. Environ Toxicol Chem, 15, 2056–2066.

    Article  CAS  Google Scholar 

  • Anonymous (1979). Master plan for pollution control of the rivers Zuari and Mandovi (NIO Technical Report No. 02/79), p. 114.

  • Asa, S. C., Bramha, S. N., Mohanty, A. K., Bastia, T. K., Behera, D., & Rath, P. (2015). Dynamics and quantification of dissolved metals in a highly contaminated river-estuarine system. Indian J Geo-Mar Sci, 44(9), 1310–1322.

    Google Scholar 

  • Aston, S. R. (1978). Estuarine chemistry. In J. P. Riley & R. Chester (Eds.), Chemical oceanography (pp. 361–440). New York: Academic.

    Google Scholar 

  • Aston, S. R. (1980). Nutrients, dissolved gases and general biogeochemistry in estuaries. In E. Olausson & I. Cato (Eds.), Chemistry and biogeochemistry estuaries (pp. 233–262). A Wiley International Publication.

  • Balachandran, K. K., Lalu Raj, C. M., Nair, M., Joseph, T., Sheeba, P., & Venugopal, P. (2005). Heavy metal accumulation in a flow restricted, tropical estuary. Estuar Coast Shelf Sci, 65, 361–370.

    Article  CAS  Google Scholar 

  • Balintova, M., Petrilakova, A., & Singovszka, E. (2012). Study of metals distribution between water and sediment in the Smolnik Creek (Slovakia) contaminated by acidic mine drainage. Chem Eng Trans, 28, 73–78. https://doi.org/10.3303/CET1228013.

    Article  Google Scholar 

  • Bem, H., Gallorini, M., Rizzio, E., & Krzemin, S. M. (2003). Comparative studies on the concentrations of some elements in the urban air particulate matter in Lodz City of Poland and in Milan Italy. Environ Int, 29, 423–428. https://doi.org/10.1016/S0160-4120(02)00190-3.

    Article  CAS  Google Scholar 

  • Benoit, G., Oktay-Marshall, S. D., Cantu, H. A., Hood, E. M., Coleman, C. H., Corapcioglu, M. O., & Santchi, P. H. (1994). Partitioning of Cu, Pb, Ag, Zn, Fe, Al, and Mn between filter-retained particles and solution in six Texas estuaries. Mar Chem, 45, 307–336. https://doi.org/10.1016/0304-4203(94)90076-0.

    Article  CAS  Google Scholar 

  • Boughriet, A., Guidance, B., Fisher, J. C., Wartel, M., & Leman, G. (1992). Variability of dissolved Mn and Zn in the Seine estuary and chemical speciation of these metals in suspended matter. Water Res, 26, 1359–1378.

    Article  CAS  Google Scholar 

  • Boxall, A. B. A., Comber, S. D., Conrad, A. U., Howcroft, J., & Zaman, N. (2000). Inputs, monitoring and fate modeling of antifouling biocides in UK estuaries. Mar Pollut Bull, 40, 898–905. https://doi.org/10.1016/S0025-326X(00)00021-7.

    Article  CAS  Google Scholar 

  • Brewer, P. G. (1975). Minor elements in seawater. In Chemical oceanography. J.P. Riley & and G. Skirrow (pp. 415–496). San Francisco: Academic.

    Google Scholar 

  • Brooks, R. R., Presely, B. J., & Kalpan, I. R. (1967). APDC-MIBK extraction system for the determination of trace elements in saline water by atomic absorption spectrophotometer. Talanta, 14, 809–816.

    Article  CAS  Google Scholar 

  • Bruland, K. W. (1983). Trace elements in sea water. In J. P. Riley & R. Chester (Eds.), Chemical oceanography (pp. 157–220). London: Academic.

    Chapter  Google Scholar 

  • Burton, J. D., Althaus, M., Millward, G. E., Morris, A.W., Statham, P. J., Tappin, A. D., & Turner, A. (1993). Processes influencing the fate of trace metals in the North Sea. Phil Trans R Soc London 343:557–568.

  • Camusso, M., Crescenzio, S., Martinotti, W., Pettine, P., & Pagnotta, R. (1997). Behavior of Co, Fe, Mn and Ni in the Po Estuary Italy. Water Air Soil Pollut, 99, 297–304.

    CAS  Google Scholar 

  • Chandran, R., & Ramamoorthy, K. (1984). Hydrobiological studies in the gradient zone of the Vellar estuary—nutrients. Mahasagar Bull Nat Inst Oceanogr, 17, 133–140.

    CAS  Google Scholar 

  • Clark, R. B. (1986). In R. B. Clark (Ed.), A text book of marine pollution (pp. 1–255). New York: Oxford Science Publication.

    Google Scholar 

  • Cutter, G. A. (1991). Trace elements in estuarine and coastal waters U.S. studies from 1986-1990. Rev Geophys, 639–644.

  • D’Costa, S., & Pai, K. (2017). Trace metal variability in nearshore waters along the central west coast of India. Indian J Geo Mar Sci, 46(02), 304–309.

    Google Scholar 

  • Dassenakis, M., Scoullos, M., & Gaitis, A. (1997). Trace metals transport and behaviour in the Mediterranean estuary of Archeloos River. Mar Pollut Bull, 34, 103–111.

    Article  CAS  Google Scholar 

  • Dessai, V. G., Nayak, G. N., & Basavaiah, N. (2009). Grain size, geochemistry, magnetic susceptibility: proxies in identifying sources and factors controlling distribution of metals in a tropical estuary, India. Estuar Coast Shelf Sci, 85, 307–318 http://14.139.123.141:8080/jspui/handle/123456789/551. Accessed 07 Jan 2018.

    Article  CAS  Google Scholar 

  • Dubey, B., Pal, A. K., & Singh, G. (2012). Trace metal composition of airborne particulate matter in the coal mining and non–mining areas of Dhanbad Region, Jharkhand, India. Atmos Pollut Res, 3, 238–246. https://doi.org/10.5094/APR.2012.026.

    Article  CAS  Google Scholar 

  • Duce, R. A., Liss, P. S., Merrill, J. T., Atlas, E. L., Buat-Menar, P., Hicks, B. B., Miller, J. M., Prospero, J. M., Arimoto, R., Church, T. M., Ellis, W., Galloway, J. N., Hansen, L., Jickells, T. D., Knap, H., Reinhardt, K. H., Schneider, B., Soudine, A., Tokos, J. J., Tsunogai, S., Wollast, R., & Zhou, M. (1991). The atmospheric input of trace species to the World Ocean. Glob Biogeochem Cycles, 5, 193–259. https://doi.org/10.1029/91GB01778.

    Article  CAS  Google Scholar 

  • Edokpayi, J. N., Odiyo, J. O., Popoola, O. E., & Msagati, T. A. M. (2016). Assessment of trace metals contamination of surface water and sediment: a case study of Mvudi River, South Africa. Sustainability, 8, 135–147. https://doi.org/10.3390/su8020135.

    Article  CAS  Google Scholar 

  • Edokpayi, J. N., Odiyo, J. O., Popoola, E. O., & Msagati, T. A. (2017). Evaluation of temporary seasonal variation of heavy metals and their potential ecological risk in Nzhelele River, South Africa. Open Chem, 15(1), 272–282. https://doi.org/10.1515/chem-2017-0033.

    Article  CAS  Google Scholar 

  • Eduljee, G., Badsha, K., & Scudamore, N. (1986). Environmental monitoring for PCB and trace metals in the vicinity of a chemical waste disposal facility—II. Chemosphere, 15, 81–93.

    Article  CAS  Google Scholar 

  • Elderfield, H. R., Upstill-Goddard, R. C., & Sholkovitz, E. R. (1990). The rare earth elements in rivers, estuaries and coastal seas and their significance to the composition of ocean waters. Geochemica et Cosmochimica Acta, 54, 971–991.

  • Ergin, M., Saydam, C., Basturk, O., Erdem, E., & Yoruk, R. (1991). Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn estuary and Izmit Bay) of the northeastern sea of Marmara. Chem Geol, 91, 269–285. https://doi.org/10.1016/0009-2541(91)90004-B.

    Article  CAS  Google Scholar 

  • Feely, R. A., Massoth, G. J., Baker, E. T., Gendron, J. F., Paulson, A. J., & Crecelius, E. A. (1986). Seasonal and vertical variations in the elemental composition of suspended and settling particulate matter in Puget Sound, Washington. Estuar Coast Shelf Sci, 22, 215–239. https://doi.org/10.1016/0272-7714(86)90114-9.

    Article  CAS  Google Scholar 

  • Fernandes, C., Fontainhas-Fernandes, A., Peixoto, F., & Salgado, M. A. (2007). Bioaccumulation of heavy metals in Liza saliens from the Esomriz-Paramos coastal lagoon, Portugal. Ecotoxicol Environ Saf, 66, 426–431.

    Article  CAS  Google Scholar 

  • Gabrielyan, A. V., Shahnazaryan, G. A., & Minasyan, S. H. (2018). Distribution and identification of sources of heavy metals in the Voghji River basin impacted by mining activities (Armenia). J Chem, 2018, 1–9. https://doi.org/10.1155/2018/7172426.

    Article  CAS  Google Scholar 

  • George, M. D. (1993). Speciation and behaviour of Cd, Pb and Cu in Zuari estuary-west coast of India. Indian J Mar Sci, 22, 216–220.

    CAS  Google Scholar 

  • George, M. D., & Sawkar, K. (1981). Organically associated copper in Mandovi and Zuari estuaries. Mahasagar, 14(1), 71–73.

    CAS  Google Scholar 

  • George, M. D., Sawkar, K., & Reddy, C. V. G. (1984). Determination of Cd, Pb and Cu in Mandovi estuary by differential pulse anodic stripping voltammetry. Indian J Mar Sci, 13, 64–68 http://nopr.niscair.res.in/handle/123456789/38744.

    CAS  Google Scholar 

  • Giri, S., & Singh, A. K. (2014). Assessment of human health risk for heavy metals in fish and shrimp collected from Subarnarekha River, India. Int J Environ Health Res, 24(5), 429–449.

    Article  CAS  Google Scholar 

  • Gouda, R., & Panigrahy, R. C. (1993). Monthly variation of some hydrographic parameters in the Rushikulya estuary. Mahasagar, 26(2), 73–85.

    Google Scholar 

  • Govindasamy, C., & Azariah, J. (1999). Seasonal variation of heavy metals in coastal water of the Coromandel Coast, Bay of Bengal. India J Mar Sci, 28, 249–256.

    CAS  Google Scholar 

  • Grasshoff, K. (1983). In K. Grasshoff, M. Ehrdardt, & K. Krembling (Eds.), Methods of seawater analysis (p. 419). Weinheim: Verlag Chemie.

    Google Scholar 

  • GU (2008). A case study in coastal zone management: biogeochemical cycling of environmental sensitive elements in Mandovi–Zuari riverine, estuarine and shelf regions of Goa West Coast of India. A project report. Goa University, Goa, India.

  • GU (2016). Atmospheric deposition of metals and their possible sources. A research report. Goa University, Goa, India, pp. 1–37.

  • Hair, J. E., William, C. B., Barry, J. B., Rolph, E. A., & Tatham, R. L. (2006). Multivariate data analysis (6th edn). New Jersey: Pearson Prentice Hall.

    Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control—a sedimentological approach. Water Res, 14, 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • Hasan, M. R., Khan, M. Z. H., Khan, M., Aktar, S., Rahman, M., Hossain, F., & Hasan, A. S. M. M. (2016). Heavy metals distribution and contamination in surface water of the Bay of Bengal coast. Cogent Environ Sci, 2(1), 1140001. https://doi.org/10.1080/23311843.2016.1140001.

    Article  CAS  Google Scholar 

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evolution of ground water composition in alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res, 34, 807–816. https://doi.org/10.1016/S0043-1354(99)00225-0.

    Article  CAS  Google Scholar 

  • Idriss, A. A., & Ahmad, A. K. (2012). Concentration of selection of heavy metals in water of Juru River in Penang, Malaysia. Afr J Biochem Res, 11, 8234–8240. https://doi.org/10.5897/AJB11.3840.

    Article  CAS  Google Scholar 

  • Islam, S., Islam, S., Mamun, A. L. H., & Islam, S. A. (2016). Total and dissolved metals in the industrial wastewater: a case study from Dhaka Metropolitan, Bangladesh. Environ Nanotechnol Monit Manag, 5, 74–80.

    Google Scholar 

  • Janardanan, V., Amaravayal, S., Revichandran, C., Manoj, N. T., Muraleedharan, K. R., & Binzy, J. (2015). Salinity response to seasonal runoff in a complex estuarine system (Cochin estuary, west coast of India). J Coast Res, 31, 869–878. https://doi.org/10.2112/JCOASTRES-D-13-00038.1.

    Article  Google Scholar 

  • Kamaruzzamanp, B. Y., Sitiwaznah, A., & Nurulna, M. Y. (2011). Physico-chemical characteristics and dissolved trace metals in the Pahang River estuary, Malaysia. Orient J Chem, 27, 397–404.

    Google Scholar 

  • Kamat, S. B., & Sankaranarayanan, V. N. (1975). Concentration of particulate iron in estuarine and coastal waters of Goa. Indian J Mar Sci, 4, 34–38 http://drs.nio.org/drs/handle/2264/5567.

    CAS  Google Scholar 

  • Karuppasamy, P. K., & Perumal, P. (2000). Biodiversity of zooplankton at Pichavaram mangroves, South India. Adv Biosci, 19, 23–32.

    Google Scholar 

  • Kerdijk, H. N., & Salomons, W. (1981). Heavy metal cycling in the Scheldt estuary. Delft Hydraulics Report M1640/M1736 (in Dutch).

  • Kessarkar, P. M., Rao, V. P., & Shynu, R. (2010). The nature and distribution of particulate matter in the Mandovi estuary, central west coast of India. Estuar Coasts, 33, 30–44 http://drs.nio.org/drs/handle/2264/3541.

    Article  CAS  Google Scholar 

  • Kessarkar, P. M., Shynu, R., Rao, V. P., Chong, F., Narvekar, T., & Zhang, J. (2013). Geochemistry of the suspended sediment in the estuaries of the Mandovi and Zuari rivers, central west coast of India. Environ Monit Assess, 185, 4461–4480 http://drs.nio.org/drs/handle/2264/4288.

    Article  CAS  Google Scholar 

  • Kim, J. O., & Mueller, C. W. (1987). Introduction to factor analysis: what it is and how to do it. Quantitative applications in the social sciences series. Newbury Park: Sage University Press.

    Google Scholar 

  • Kremling, K. (1985). The distribution of cadmium, copper, nickel, manganese, and aluminium in surface waters of the open Atlantic and European shelf area. Deep-Sea Res, 32, 531–555. https://doi.org/10.1016/0198-0149(85)90043-3.

    Article  CAS  Google Scholar 

  • Kumar, A. A., Dipu, S., & Sobha, V. (2011). Seasonal variation of heavy metals in Cochin estuary and adjoining Periyar and Muvattupuzha rivers, Kerala, India. Global J Environ Res, 5(1), 15–20.

    CAS  Google Scholar 

  • Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of ground water quality in a black foot disease area in Taiwan. Sci Total Environ, 313, 77–89. https://doi.org/10.1016/S0048-9697(02)00683-6.

    Article  CAS  Google Scholar 

  • Martin, J., Elbaz-Poulichet, F., Guieu, C., Loye-Pilot, M., & Han, G. (1989). River versus atmospheric input of material to the Mediterranean Sea: an overview. Mar Chem, 28, 159–182. https://doi.org/10.1016/0304-4203(89)90193-X.

    Article  CAS  Google Scholar 

  • Mayer, L. (1982). Aggregation of colloidal iron during estuarine mixing: kinetics, mechanism and seasonality. Geochim Cosmochim Acta, 46, 2527–2535. https://doi.org/10.1016/0016-7037(82)90375-1.

    Article  CAS  Google Scholar 

  • Mayer, L. M., & Schick, L. L. (1981). Removal of hexavalent chromium from estuarine water by model substrates and natural sediments. Environ Sci Technol, 15, 1482–1484. https://doi.org/10.1021/es00094a009.

    Article  CAS  Google Scholar 

  • Mesquita, A., & Kaisary, S. (2007). Distribution of iron and manganese in the Mandovi and Zuari estuaries. Dona Paula: National Institute of Oceanography (pp. 99–104).

    Google Scholar 

  • Mitra, S., Sarkar, S. K., Raja, P., Biswas, J. K., & Murugan, K. (2018). Dissolved trace elements in Hooghly (Ganges) River estuary, India: risk assessment and implications for management. Mar Pollut Bull, 133, 402–414.

    Article  CAS  Google Scholar 

  • Morris, A. W. (1990). Kinetic and equilibrium approaches to estuarine chemistry. Sci Total Environ, 97-98, 253–266. https://doi.org/10.1016/0048-9697(90)90244-O.

    Article  CAS  Google Scholar 

  • Morris, A. W., Allen, J. I., Howland, R. J. M., & Wood, R. G. (1995). The estuary plume zone: source or sink for land-derived nutrient discharges. Estuar Coast Shelf Sci, 40, 387–402. https://doi.org/10.1006/ecss.1995.0027.

    Article  CAS  Google Scholar 

  • Muangthong, S. (2015). Assessment of surface water quality using multivariate statistical techniques: a case study of the Nampong River basin, Thailand. J Ind Technol, 11, 25–37.

    Google Scholar 

  • Muhamed Ashraf, P., Edwin, L., & Meenakumari, B. (2007). Trace metal pollution in estuaries of South India. Asian J Water, Environ Pollut, 5(2), 63–69.

    Google Scholar 

  • Mukhopadhyay, S. K., Biswas, H. D. T. K., De, T. K., & Jana, T. K. (2006). Fluxes of nutrients from the tropical River Hooghly at the land–ocean boundary of Sundarbans, NE coast of Bay of Bengal, India. J Mar Syst, 62, 921–921. https://doi.org/10.1016/j.jmarsys.2006.03.004.

    Article  Google Scholar 

  • Negrel, P. (1997). Multi element chemistry of Loire estuary sediments: anthropogenic versus natural sources. Estuar Coast Shelf Sci, 44, 395–411.

  • NIO (1979). Master plan for pollution control of the rivers Zuari and Mandovi. Technical Report No. 02/79.

  • Nouri, J., Mahvi, A. H., Babaei, A., & Ahmadpour, E. (2006). Regional pattern distribution of groundwater fluoride in the Shush aquifer of Khuzestan County. Iran Fluor, 39, 321–325.

    CAS  Google Scholar 

  • Nouri, J., Mahvi, A. H., Jahed, G. R., & Babaei, A. A. (2008). Regional distribution pattern of groundwater heavy metals resulting from agricultural activities. Environ Geol, 55, 1337–1343. https://doi.org/10.1007/s00254-007-1081-3.

    Article  CAS  Google Scholar 

  • Oldham, V. E., Swenson, M. M., & Buck, K. N. (2014). Spatial variability of total dissolved copper and copper speciation in the inshore waters of Bermuda. Mar Pollut Bull, 79, 314–320. https://doi.org/10.1016/j.marpolbul.2013.12.016.

    Article  CAS  Google Scholar 

  • Onojake, M. C., Ukerun, S. O., & Iwuoha, G. (2011). A statistical approach for evaluation of the effects of industrial and municipal wastes on Warri Rivers, Niger Delta, Nigeria. Water Qual Expo Health, 3, 91–99.

    Article  CAS  Google Scholar 

  • Onojake, M. C., Sikoki, F. D., Omokheyeke, O., & Akpiri, R. U. (2017). Surface water characteristics and trace metals level of the Bonny/New Calabar River estuary, Niger Delta, Nigeria. Appl Water Sci, 7(2), 951–959. https://doi.org/10.1007/s13201-015-0306-y.

    Article  CAS  Google Scholar 

  • Oslen, C. R., Cutshall, N. H., & Larsen, I. L. (1982). Pollutant –particle associations and dynamics in coastal marine environments. A review. Marine Chemistry, 11, 501–533.

  • Ouseph, R. R. (1992). Dissolved and particulate trace metals in the Cochin estuary. Mar Pollut Bull, 24, 186–192.

    Article  CAS  Google Scholar 

  • Owens, R. E., Balls, P. W., & Price, N. (1997). Physicochemical processes and their effects on the composition of suspended particulate material in estuaries: implications for monitoring and modeling. Mar Pollut Bull, 34, 51–60. https://doi.org/10.1016/S0025-326X(96)00054-9.

    Article  CAS  Google Scholar 

  • Panigrahy, P. K., Das, J., & Sahoo, R. K. (1999). Evaluation of the influence of various physicochemical parameters on coastal water quality around Orissa by factor analysis. Indian J Mar Sci, 28, 360–364 http://nopr.niscair.res.in/handle/123456789/25709.

    Google Scholar 

  • Pardon, R., Barroda, E., Perez, L., & Vega, M. (1990). Determination and association of heavy metals in Pizzeria River. Water Res, 24, 373–379.

    Article  Google Scholar 

  • Parvez Al-Usmani, S. M. (2018). Impact of mining activities on estuarine hydrological regime and benthic life in Goa. India Oceanogr Fish Open Access J, 8(3), 555737. https://doi.org/10.19080/OFOAJ.2018.08.555737.

    Article  Google Scholar 

  • Perumal, N. V., Rajkumar, M., Perumal, P., & Rajasekar, K. T. (2009). Seasonal variations of plankton diversity in the Kaduviyar estuary, Nagapattinam, southeast coast of India. J Environ Biol, 30, 1035–1046.

    Google Scholar 

  • Phol, C., Croot, P. L., Hennings, U., Daberkow, T., Budeus, G., Rutger, V. D., & Loeff, M. (2010). Synoptic transects on the distribution of trace elements (Hg, Pb, Cd, Cu, Ni, Co, Mn, Fe and Al) in surface waters of the Northern- and Southern East Atlantic. J Mar Syst, 84(1), 28–41. https://doi.org/10.1016/j.jmarsys.2010.08.003.

    Article  Google Scholar 

  • Prabhu, A. V., Rajkumar, M., & Perumal, P. (2008). Seasonal variations in physicochemical characteristics of Pichavaram mangroves, southeast coast of India. J Environ Biol, 29, 945–950.

    Google Scholar 

  • Pradhan, U. K., & Shirodkar, P. V. (2011). Assessment of the impact of developmental activities on the estuarine environments of Mandovi and Zuari rivers of Goa along the west coast of India. In Proceedings of International Conf. in Ocean Engineering, 1–5 Feb. 2009 (pp. 1145–1156). Chennai: IIT Madaras http://drs.nio.org/drs/handle/2264/3611. Accessed 03 March 2018.

    Google Scholar 

  • Priya, K. L., Jegathambal, P., & James, E. J. (2014). Trace metal distribution in a shallow estuary. Toxicol Environ Chem, 96(4), 579–593. https://doi.org/10.1080/02772248.2014.976222.

    Article  CAS  Google Scholar 

  • Priya, K. L., Jegathambal, P., & James, E. J. (2015a). Seasonal dynamics of turbidity maximum in the Muthupet estuary, India. J Ocean Univ China, 14, 765–777. https://doi.org/10.1007/s11802-015-2510-7.

    Article  CAS  Google Scholar 

  • Priya, K. L., Jegathambal, P., & James, E. J. (2015b). On the factors affecting the settling velocity of fine suspended sediments in a shallow estuary. J Oceanogr, 71, 163–175. https://doi.org/10.1007/s10872-014-0269-x.

    Article  CAS  Google Scholar 

  • Qasim, S. Z., & Sen Gupta, R. (1981). Present status of marine pollution in India. In B. Patel (Ed.), Management of Environment (pp. 310–329).

    Google Scholar 

  • Ragaini, R. C., Ralston, H. R., & Roberts, N. (1977). Environmental trace metal contamination in Kellogg, Idaho, near a lead smelting complex. Environ Sci Technol, 11, 773–781. https://doi.org/10.1021/es60131a004.

    Article  CAS  Google Scholar 

  • Rajasegar, M. (2003). Physico-chemical characteristics of the Vellar estuary in relation to shrimp farming. J Environ Biol, 24, 95–101.

    CAS  Google Scholar 

  • Rath, P., Bhatta, D., Sahoo, B. N., & Panda, U. C. (2000). Multivariate statistical techniques in hydro geochemical studies: an example from Karnataka. India Water Res, 36, 2437–2442.

    Google Scholar 

  • Revichandran, C., Srinivas, K., Muraleedharan, K. R., Rafee Amaravayal, S., Vijayakumar, K., & Jayalakshmy, K. V. (2012). Environmental set-up and tidal propagation in a tropical estuary with dual connection to the sea (SW coast of India). Environ Earth Sci, 66, 1031–1042. https://doi.org/10.1007/s12665-011-1309-0.

    Article  Google Scholar 

  • Richman, M. B. (1986). Rotation of principal components. J Climatol, 6, 293–335. https://doi.org/10.1002/joc.3370060305.

    Article  Google Scholar 

  • Sadiq, M. (1992). Toxic metal chemistry in marine environments. New York: Marcel Dekker Inc. ISBN 0824786475.

    Google Scholar 

  • Sahu, K. C., Panda, U. C., & Mohapatra, D. M. (1998). Geo-chemistry and mineralogy of sediments in Rushikulya estuary, east coast of India. Chem Environ Res, 7, 77–92.

    CAS  Google Scholar 

  • Salmons, W., & Forstner, U. (1984). Metals in hydrocycle (p. 349). New York: Springer.

    Book  Google Scholar 

  • Samanta, S., & Dalai, T. K. (2018). Massive production of heavy metals in the Ganga (Hooghly) River estuary, India: global importance of solute-particle interaction and enhanced metal fluxes to the oceans. Geochim Cosmochim Acta, 228, 243–258.

    Article  CAS  Google Scholar 

  • Sankaranarayanan, V. N., & Reddy, C. V. G. (1973). Copper content in the inshore and estuarine waters along the central west coast of India. Curr Sci, 42, 223–224.

    CAS  Google Scholar 

  • Santhi, K., & Prabhahar, C. (2014). Seasonal distribution of heavy metals in Vellar estuary Mudasalodai and Muzhukuthurai coastal waters south east coast of India. Int J Pharm Biological Arch, 5(3).

  • Sathish, R. J. (1998) Sedimentation rate and metal accumulation in Adyar and Cooum estuaries Thesis, Anna University, Chennai, India

  • Satyanarayana, D., Rao, I. M., & Prasada Reddy, B. R. (1985). Chemical oceanography of harbour and coastal environment of Visakhapatnam (Bay of Bengal). Part 1. Trace metals in water and particulate matter. Indian J Mar Sci, 14, 139–146 http://nopr.niscair.res.in/handle/123456789/38823. Accessed 02 Feb 2018.

    CAS  Google Scholar 

  • Schenau, S., Reichart, G., & De Lange, G. (2002). Oxygen minimum zone controlled Mn redistribution in Arabian Sea sediments during the Late Quaternary. Paleoceanography, 17, 1058–1069. https://doi.org/10.1029/2000PA000621.

    Article  Google Scholar 

  • Senapati, N. K., & Sahu, K. C. (1996). Heavy metal distribution in Subarnarekha River, east coast of India. Indian J Mar Sci, 25, 109–114.

    CAS  Google Scholar 

  • Sengupta, P., Singbal, S. Y .S., & Sanzigiri, S. (1978). Atomic absorption analysis of a few trace metals in Arabian sea waters. Indian J. Mar. Sci., 7, 295–299.

  • Shetye, S. R., Kumar, M. D., & Shankar, D. (2007). The Mandovi and Zuari estuaries. Goa: National Institute of Oceanography.

    Google Scholar 

  • Shezilli, N. A. M., Yunus, K., Ahmad, A. S., Abdullah, N., & Rashid, M. K. A. (2006). Heavy metal pollution status in the Malaysian aquatic environment. Aquat Ecosyst Health Manag, 9, 137–145. https://doi.org/10.1080/14634980600724023.

    Article  CAS  Google Scholar 

  • Shirodkar, P. V., Deepthi, M., Vethamony, P., Mesquita, A. M., Pradhan, U. K., Babu, M. T., et al. (2012). Tide dependent seasonal changes in water quality and assimilative capacity of anthropogenically influenced Mormugao harbour water. Indian J Geo-Mar Sci, 41(4), 314–330.

    CAS  Google Scholar 

  • Shynu, R., Rao, V. P., Kessarkar, P. M., & Rao, T. G. (2012). Temporal and spatial variability of trace metals in suspended matter of the Mandovi estuary, central west coast of India. Environ Earth Sci, 65, 725–739. https://doi.org/10.1007/s12665-011-1119-4.

    Article  CAS  Google Scholar 

  • Shynu, R., Rao, V. P., Parthiban, G., Balakrishnan, S., Narvekar, T., & Kessarkar, P. M. (2013). REE in suspended particulate matter and sediment of the Zuari estuary and adjacent shelf, Western India: influence of mining and estuarine turbidity. Mar Geol, 346, 326–342 http://drs.nio.org/drs/handle/2264/4398. Accessed 24 Feb 2018.

    Article  CAS  Google Scholar 

  • Singh, K. (2000). Studies on distribution of some trace metals in Mandovi-Zuari estuarine systems of Goa, west coast of India. M. Phil Thesis. Goa University.

  • Singh, K., Matta, V. M., Sharma, B. M., & Usha, K. (2008). Distribution of some of trace metals in the Mandovi estuary of Goa, west coast of India. J Curr Sci, 15, 619–628 http://irgu.unigoa.ac.in/drs/handle/unigoa/4904. Accessed 12 March 2018.

    CAS  Google Scholar 

  • Singh, K., Matta, V. M., Sharma, B. M., & Usha, K. (2009a). Trace metals in sediments of the Zuari River of Goa, west coast of India. The Ecoscan, 3, 111–111.

    CAS  Google Scholar 

  • Singh, K., Matta, V. M., Sharma, B. M., & Usha, K. (2009b) Seasonal variation of organic carbon in the sediments of Mandovi and Zuari estuarine systems of Goa, west coast of India. Paper presented at the 96th Indian Science Congress held at North Eastern Hill University (NEHU), Shillong, from 3–7 Jan 2009

  • Singh, K., Matta, V. M., Sharma, B. M., & Usha, K. (2010). Concentrations of some of trace metals in the estuarine waters of Zuari River of Goa. India J Curr Sci, 15, 211–218.

    Google Scholar 

  • Steinberg, C. (1980). Species of dissolved metals derived from oligotrophic hard water. Water Res, 14, 1239–1250. https://doi.org/10.1016/0043-1354(80)90182-7.

    Article  CAS  Google Scholar 

  • Strickland, S. C., & Parsons, T. R. (1979). A practical handbook of seawater analyses. Ottawa: Bulletin of Fisheries Research Board of Canada.

    Google Scholar 

  • Sundaray, S. K. (2007). Water quality assessment of Mahanadi River, Orissa, India using multivariate statistical approach. Doctoral Thesis. In Utkal University. India: Bhubaneswar.

    Google Scholar 

  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol, 39, 611–626. https://doi.org/10.1007/s002540050473.

    Article  CAS  Google Scholar 

  • Tappin, A. D., Hydes, D. J., Burton, J. D., & Statham, P. J. (1993). Concentrations, distributions and seasonal variability of dissolved Cd, Co, Cu, Mn, Ni, Pb, Zn in the English Channel. Cont Shelf Res, 13, 941–969. https://doi.org/10.1016/0278-4343(93)90018-S.

    Article  Google Scholar 

  • Tsukaijan, K., & Young, D. R. (1978). Determination of microgram amounts of some transition metals in seawater by methyl isobutyl ketone-nitric acid absorption spectrophotometry. Anal Chem, 50, 1250–1253.

    Article  Google Scholar 

  • Umamaheswara Rao, T., Nageswara Rao, I., & Sunakar, P. (2015). Seasonal variability and behavior of hydrographic and nutrient parameters in the estuarine waters of Gauthami Godavari, east coast of India. IOSR J Environ Sci, Toxicol Food Technol (IOSR-JESTFT), 9, 10–19.

    Google Scholar 

  • Upadhyay, S. (1988). Physico­chemical characteristics of Mahanadi estuarine eco­system. East coast India Indian J Mar Sci, 17, 19–23.

    CAS  Google Scholar 

  • Uwah, I. E., Dan, S. F., Etiuma, R. A., & Umoh, U. U. (2013). Evaluation of status of heavy metal pollution of sediments in Qua-Iboe River estuary and associated creeks, South-Eastern Nigeria. Environ Pollut, 2(110–122). https://doi.org/10.5539/ep.v2n4p110.

  • Van der Berg, C. M. G. (1993). Complex formation and the chemistry of selected trace elements in estuaries. Estuaries, 16, 512–520. https://doi.org/10.2307/1352598.

    Article  Google Scholar 

  • Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res, 32, 3581–3592. https://doi.org/10.1016/S0043-1354(98)00138-9.

    Article  CAS  Google Scholar 

  • Vijith, V., Sundar, D., & Shetye, S. R. (2009). Time-dependence of salinity in monsoonal estuaries. Estuar Coast Shelf Sci, 85, 601–608. https://doi.org/10.1016/j.ecss.2009.10.003.

    Article  CAS  Google Scholar 

  • Wang, B., Wu, R., & Fu, X. (2000). Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim, 13, 1517–1536.

    Article  Google Scholar 

  • Wang, D., Lin, W., Yang, X., Zhai, W., Dai, M., & Chen, C. (2012). Occurrences of dissolved trace metals (Cu, Cd, and Mn) in the Pearl River estuary (China), a large river-ground water-estuary system. Cont Shelf Res, 50–51, 54–63.

    Article  Google Scholar 

  • Wang, Z., Feng, J., Jiang, T., & Gu, Y. (2013). Assessment of metal contamination in surface sediments from Zhelin Bay, the South China Sea. Mar Pollut Bull, 76, 383–388.

    Article  CAS  Google Scholar 

  • Windom, H. L., Smith, R. G., & Rawlinson, C. (1988). Trace metal transport in a tropical estuary. Mar Chem, 24, 293–305. https://doi.org/10.1016/0304-4203(88)90037-0.

    Article  CAS  Google Scholar 

  • Windom, H. L., Smith, R. G., & Rawlinson, C. (1989). Particulate trace metal composition and flux across the southeastern U.S. continental shelf. Mar Chem, 27, 283–297. https://doi.org/10.1016/0304-4203(89)90052-2.

    Article  CAS  Google Scholar 

  • Wong, C. S. C., Li, X. D., Zhang, G., Qi, S. H., & Peng, X. Z. (2003). Atmospheric deposition of heavy metals in the Pearl River Delta, China. Atmos Environ, 37, 767–776. https://doi.org/10.1016/S1352-2310(02)00929-9.

    Article  CAS  Google Scholar 

  • Wu, B., Wang, G., Wu, J., Fu, Q., & Liu, C. (2014). Sources of heavy metals in surface sediments and an ecological risk assessment from two adjacent plateau reservoirs. PLoS One, 9, e102101. 46 https://doi: 10.1371/journal.pone.0102101.

    Google Scholar 

  • Wunderlin, D. A., Diaz, M. P., Ame, M. V., Pesce, S. F., Hued, A. C., & Bistoni, M. A. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia River basin (Cordoba-Argentina). Water Res, 35, 2881–2894. https://doi.org/10.1016/S0043-1354(00)00592-3.

    Article  CAS  Google Scholar 

  • Yu, T., Zhang, Y., & Zhang, Y. (2012). Distribution and bioavailability of heavy metals in different particle-size fractions of sediments in Taihu Lake, China. Chem Speciat Bioavailab, 24, 205–215. https://doi.org/10.3184/095422912X13488240379124.

    Article  CAS  Google Scholar 

  • Zhang, J., Huang, W. W., Liu, M. G., & Zhou, Q. (1990). Drainage basin weathering and major element transportation of two large Chinese rivers (Huanghe and Changjiang). J Geophys, Res, 95, 13277–13288. https://doi.org/10.1029/JC095iC08p13277.

  • Zhang, Q., Murphy, R. R., Tian, R., Forsyth, M. K., Trentacoste, E. M., & Keisman, J. (2018). Chesapeake Bay’s water quality condition has been recovering: insights from a multimetric indicator assessment of thirty years of tidal monitoring data. Sci Total Environ, 637–638, 1617–1625. https://doi.org/10.1016/j.scitotenv.2018.05.025.

    Article  CAS  Google Scholar 

  • Zhou, J. L., Liu, Y. P., & Abrahams, P. W. (2003). Trace metal behavior in the Conwy estuary, North Wales. Chemosphere, 51, 429–440. https://doi.org/10.1016/S0045-6535(02)00853-6.

    Article  CAS  Google Scholar 

  • Zingde, M. D., Singbal, S. Y. S., Moraes, C. F., & Reddy, C. V. G. (1976). Arsenic, copper, zinc and manganese in the marine flora and fauna of coastal and estuarine waters around Goa. Indian Journal of Marine Sciences, 5, 212–217 http://nopr.niscair.res.in/handle/123456789/39486.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Secretary of the Ministry of Earth Sciences (MoES), Government of India, for the financial support and the Vice Chancellor of Goa University, Goa, for the support. The authors express their sincere gratitude to Dr. SWA Naqvi, Former Director of NIO, Goa; Dr. Damodar Shenoy, Senior Scientist, NIO, Goa; and Dr. Konakalla Adisesha Sai for their help rendered during the course of investigation. We also extent our sincere thanks and gratitude to the anonymous reviewers for critically examining the manuscript with their valuable comments and suggestions. We also appreciate the arduous work of the editors.

Funding

The funding is from Ministry of Earth Sciences, Government of India, New Delhi, vide ref no: 36/OOIS/Siber/07; dated 19/09/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishnu M. Matta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaonkar, C.V., Matta, V.M. Impact of mining on metal concentration in waters of the Zuari estuary, India. Environ Monit Assess 191, 368 (2019). https://doi.org/10.1007/s10661-019-7506-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7506-0

Keywords

Navigation