Skip to main content

Advertisement

Log in

A review on drone-based harmful algae blooms monitoring

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Rapid development and applications of unmanned aerial vehicles (UAVs) provide promising solutions to and new opportunities for environmental monitoring. Owing to their flexibility in flight scheduling, high spatial resolution, and costs-effectiveness, UAVs have become a popular tool for monitoring dynamic environmental processes, such as emergence and outbreak of harmful algae blooms (HABs). The HABs outbreak, often linked with anthropogenic eutrophication, has become a serious environmental health problem that threats our communities. Existing studies show that UAV-based HABs monitoring is a cost-effective means of assisting environmental managers in developing precautionary warning system and coping strategies. This article summarized the state-of-the-art of using UAVs and lightweight onboard multispectral sensors for HABs monitoring from the perspective of quantitative remote sensing. It culminates in a discussion of challenges and opportunities for future research and applications on drone-based HABs monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aasen, H., Burkart, A., Bolten, A., & Bareth, G. (2015). Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: from camera calibration to quality assurance. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 245–259.

    Article  Google Scholar 

  • Aasen, H., Honkavaara, E., Lucieer, A., & Zarco-Tejada, P. (2018). Quantitative remote sensing at ultra-high resolution with uav spectroscopy: a review of sensor technology, measurement procedures, and data correction workflows. Remote Sensing, 10(7), 1091.

    Article  Google Scholar 

  • Anderson, D. M. (2009). Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean & Coastal Management, 52(7), 342–347.

    Article  Google Scholar 

  • Bagaram, M., Giuliarelli, D., Chirici, G., Giannetti, F., & Barbati, A. (2018). UAV remote sensing for biodiversity monitoring: are forest canopy gaps good covariates? Remote Sensing, 10(9), 1397.

    Google Scholar 

  • Bhardwaj, A., Sam, L., Martín-Torres, F. J., & Kumar, R. (2016). UAVs as remote sensing platform in glaciology: present applications and future prospects. Remote Sensing of Environment, 175, 196–204.

    Article  Google Scholar 

  • Cai, G., Dias, J., & Seneviratne, L. (2014). A survey of small-scale unmanned aerial vehicles: recent advances and future development trends. Unmanned Systems, 2(02), 175–199.

    Article  Google Scholar 

  • Congalton, R. G. (1991). Remote sensing and geographic information system data integration: Error sources and research issues. Photogrammetric Engineering & Remote Sensing, 57(6), 677–687.

    Google Scholar 

  • Davidson, K., Tett, P., & Gowen, R. (2011). Harmful algal blooms. Marine Pollution and Human Health, 95–127.

  • Du, Q., Raksuntorn, N., Orduyilmaz, A., & Bruce, L. M. (2008). Automatic registration and mosaicking for airborne multispectral image sequences. Photogrammetric Engineering & Remote Sensing, 74(2), 169–181.

    Article  Google Scholar 

  • Dugdale, S. J. (2007). An evaluation of imagery from an unmanned aerial vehicle (UAV) for the mapping of intertidal macroalgae on Seal Sands, Tees Estuary, UK (doctoral dissertation, Durham University).

  • Flynn, K., & Chapra, S. (2014). Remote sensing of submerged aquatic vegetation in a shallow non-turbid river using an unmanned aerial vehicle. Remote Sensing, 6(12), 12815–12836.

  • Fráter, T., Juzsakova, T., Lauer, J., Dióssy, L., & Rédey, A. (2015). Unmanned aerial vehicles in environmental monitoring—an efficient way for remote sensing. Journal of Environmental Science and Engineering A, 4, 85–91.

    Google Scholar 

  • Glibert, P. M., Anderson, D. M., Gentien, P., Granéli, E., & Sellner, K. G. (2005). The global, complex phenomena of harmful algal blooms. Oceanography, 18(2), 136–147.

    Article  Google Scholar 

  • Hallegraeff, G. M. (1993). A review of harmful algal blooms and their apparent global increase. Phycologia, 32(2), 79–99.

    Article  Google Scholar 

  • Honkavaara, E., Hakala, T., Kirjasniemi, J., Lindfors, A., Mäkynen, J., Nurminen, K., ..., & Markelin, L. (2013). New light-weight stereosopic spectrometric airborne imaging technology for high-resolution environmental remote sensing case studies in water quality mapping. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1, W1.

  • Jakobsen, O., & Johnson, E. (2005). Control architecture for a uav-mounted pan/tilt/roll camera gimbal. In Infotech@ Aerospace (p. 7145).

  • Jang, S. W., Yoon, H. J., Kwak, S. N., Sohn, B. Y., Kim, S. G., & Kim, D. H. (2016). Algal bloom monitoring using UAVs imagery. Advanced Science and Technology Letters, 138(NGCIT 2016), 30–33.

    Article  Google Scholar 

  • Jung, S., Cho, H., Kim, D., Kim, K., Han, J. I., & Myung, H. (2017). Development of algal bloom removal system using unmanned aerial vehicle and surface vehicle. IEEE Access, 5, 22166–22176.

    Article  Google Scholar 

  • Kiage, L. M., & Walker, N. D. (2009). Using NDVI from MODIS to monitor duckweed bloom in Lake Maracaibo, Venezuela. Water Resources Management, 23(6), 1125–1135.

    Article  Google Scholar 

  • Koparan, C., & Koc, A. B. (2016). Unmanned aerial vehicle (UAV) assisted water sampling. In 2016 ASABE annual international meeting (p. 1). American Society of Agricultural and Biological Engineers.

  • Koparan, C., Koc, A. B., Privette, C. V., & Sawyer, C. B. (2018). In situ water quality measurements using an unmanned aerial vehicle (UAV) system. Water, 10(3), 264.

    Article  Google Scholar 

  • Kubiak, K. A., Kotlarz, J., & Mazur, A. M. (2016). Monitoring cyanobacteria blooms in freshwater lakes using remote sensing methods. Polish Journal of Environmental Studies, 25(1), 27–35.

    Article  Google Scholar 

  • Lapointe, B. E., Herren, L. W., Debortoli, D. D., & Vogel, M. A. (2015). Evidence of sewage-driven eutrophication and harmful algal blooms in Florida’s Indian River Lagoon. Harmful Algae, 43, 82–102.

    Article  CAS  Google Scholar 

  • Liu, S., Zhang, C., Zhang, Y., Wang, T., Zhao, A., Zhou, T., & Jia, X. (2017). Miniaturized spectral imaging for environment surveillance based on UAV platform. In AOPC 2017: Optical spectroscopy and imaging (Vol. 10461, p. 104611K). International Society for Optics and Photonics.

  • Lomax, A. S., Corso, W., & Etro, J. F. (2005). Employing unmanned aerial vehicles (UAVs) as an element of the Integrated Ocean Observing System. In OCEANS, 2005. Proceedings of MTS/IEEE (pp. 184–190). IEEE.

  • Mäkynen, J., Holmlund, C., Saari, H., Ojala, K., & Antila, T. (2011). Unmanned aerial vehicle (UAV) operated megapixel spectral camera. Proceedings of SPIE, Electro-Optical Remote Sensing, Photonic Technologies, and Applications, 81860Y-1.

  • Mathewson, S. (2015). World’s lakes at risk of continued algal blooms triggered by warm waters. http://www.natureworldnews.com/articles/18882/20151220/worlds-great-lakes-risk-hazardous-algal-blooms-triggered-warm-waters.htm [Accessed 20 Dec. 2015].

  • Matthews, M. W. (2014). Eutrophication and cyanobacterial blooms in South African inland waters: 10years of MERIS observations. Remote Sensing of Environment, 155, 161–177.

    Article  Google Scholar 

  • Mohamed, Z. A. (2001). Alum and lime-alum removal of toxic and nontoxic phytoplankton from the nile river water: laboratory study. Water Resources Management, 15(4), 213–221.

    Article  Google Scholar 

  • Näsi, R., Honkavaara, E., Blomqvist, M., Lyytikäinen-Saarenmaa, P., Hakala, T., Viljanen, N., et al. (2018). Remote sensing of bark beetle damage in urban forests at individual tree level using a novel hyperspectral camera from UAV and aircraft. Urban Forestry & Urban Greening, 30, 72–83.

    Article  Google Scholar 

  • Nebiker, S., Annen, A., Scherrer, M., & Oesch, D. (2008). A light-weight multispectral sensor for micro UAV—opportunities for very high resolution airborne remote sensing. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B1), 1193–1199.

    Google Scholar 

  • Ngo, A. S. K., Desingco, J. D. B., Cordel II, M. O., Uy, R. L., Ong, P. M. B., Punzalan, E. R., & Ilao, J. P. (2015). Determining the correlation between concentration levels and the visual features of algae in water surfaces. In Philippine Computing Science Congress (PCSC).

  • Nguyen, T. (2015). Optimal ground control points for geometric correction using genetic algorithm with global accuracy. European Journal of Remote Sensing, 48(1), 101–120.

    Article  Google Scholar 

  • Paerl, H. W., Gardner, W. S., Havens, K. E., Joyner, A. R., McCarthy, M. J., Newell, S. E., Qin, B., & Scott, J. T. (2016). Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae, 54, 213–222.

    Article  Google Scholar 

  • Quigley, M., Goodrich, M. A., Griffiths, S., Eldredge, A., & Beard, R. W. (2005). Target acquisition, localization, and surveillance using a fixed-wing mini-UAV and gimbaled camera. In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE international Conference on (pp. 2600–2605). IEEE.

  • Saari, H., Pellikka, I., Pesonen, L., Tuominen, S., Heikkilä, J., Holmlund, C., ..., & Antila, T. (2011). Unmanned aerial vehicle (UAV) operated spectral camera system for forest and agriculture applications. Proceedings of the SPIE, Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII, Prague, Czech Republic, 19, 81740H.

  • Shang, S., Lee, Z., Lin, G., Hu, C., Shi, L., Zhang, Y., Li, X., Wu, J., & Yan, J. (2017). Sensing an intense phytoplankton bloom in the western Taiwan Strait from radiometric measurements on a UAV. Remote Sensing of Environment, 198, 85–94.

    Article  Google Scholar 

  • Shen, L., Xu, H., & Guo, X. (2012). Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework. Sensors, 12(6), 7778–7803.

    Article  Google Scholar 

  • Sridhar, B. M., & Vincent, R. K. (2007). Spectral reflectance measurements of a microcystis bloom in upper Klamath Lake, Oregon. Journal of Great Lakes Research, 33(1), 279–284.

    Article  Google Scholar 

  • Stewart, D. (1965). A platform with six degrees of freedom. Proceedings of the institution of mechanical engineers, 180(1), 371–386.

    Article  Google Scholar 

  • Su, T. C., & Chou, H. T. (2015). Application of multispectral sensors carried on unmanned aerial vehicle (UAV) to trophic state mapping of small reservoirs: a case study of Tain-Pu reservoir in Kinmen, Taiwan. Remote Sensing, 7(8), 10078–10097.

    Article  Google Scholar 

  • Tellidis, I., & Levin, E. (2014). Photogrammetric image acquisition with small unmanned aerial systems. In ASPRS 2014 Annual Conference Louisville, Kentucky.

  • Torres-Sánchez, J., López-Granados, F., & Peña, J. M. (2015). An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops. Computers and Electronics in Agriculture, 114, 43–52.

    Article  Google Scholar 

  • Van der Merwe, D., & Price, K. P. (2015). Harmful algal bloom characterization at ultra-high spatial and temporal resolution using small unmanned aircraft systems. Toxins, 7(4), 1065–1078.

    Article  Google Scholar 

  • Von Bueren, S. K., Burkart, A., Hueni, A., Rascher, U., Tuohy, M. P., & Yule, I. J. (2015). Deploying four optical UAV-based sensors over grassland: challenges and limitations. Biogeosciences, 12(1), 163–175.

    Article  Google Scholar 

  • Wang, Y., Chen, Y., & Xie, D. (2014). Automatic mosaic method of UAV water-area images based on POS data. In Proceedings of the 3rd International Conference on Multimedia Technology (ICMT 2013) (pp. 53–62). Springer, Berlin.

  • Windau, J., & Itti, L. (2011). Multilayer real-time video image stabilization. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on (pp. 2397–2402). IEEE.

  • Wolinsky, H. (2017). Biology goes in the air: Unmanned aerial vehicles offer biologists an efficient tool for observation and sampling from a safe distance. EMBO Reports, e201744740.

  • Xu, F., Gao, Z., Shang, W., Jiang, X., Zheng, X., Ning, J., & Song, D. (2017a). Validation of MODIS-based monitoring for a green tide in the Yellow Sea with the aid of unmanned aerial vehicle. Journal of Applied Remote Sensing, 11(1), 012007.

    Article  Google Scholar 

  • Xu, F., Gao, Z., Jiang, X., Ning, J., Zheng, X., Song, D., ... & Chen, M. (2017b). Mapping of green tide using true color aerial photographs taken from a unmanned aerial vehicle. In Remote Sensing and Modeling of Ecosystems for Sustainability XIV (Vol. 10405, p. 104050M). International Society for Optics and Photonics.

  • Yang, B., & Chen, C. (2015). Automatic registration of UAV-borne sequent images and LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 101, 262–274.

    Article  Google Scholar 

  • Yanushevsky, R. (2011). Guidance of unmanned aerial vehicles. CRC press.

  • Zhang, F., Hu, C., Shum, C. K., Liang, S., & Lee, J. (2017). Satellite remote sensing of drinking water intakes in Lake Erie for cyanobacteria population using two MODIS-based indicators as a potential tool for toxin tracking. Frontiers in Marine Science, 4, 124.

    Article  Google Scholar 

  • Zhang, D., Zhou, X., Zhang, J., Lan, Y., Xu, C., & Liang, D. (2018). Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging. PLoS One, 13(5), e0187470.

    Article  Google Scholar 

Download references

Acknowledgments

The research team appreciates the great support from Mr. Tyler Carpenter, GIS and Environmental Planning Director at the Greater Egypt Regional Planning and Development Commission.

Funding

This project was financially supported by the FY18 Small Water Grant from the Illinois Water Resources Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruopu Li.

Ethics declarations

Disclaimer

None of the conclusions expressed here necessarily reflects views other than those of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Li, R., Zhang, F. et al. A review on drone-based harmful algae blooms monitoring. Environ Monit Assess 191, 211 (2019). https://doi.org/10.1007/s10661-019-7365-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7365-8

Keywords

Navigation