Skip to main content

Advertisement

Log in

An accurate and sensitive analytical strategy for the determination of palladium in aqueous samples: slotted quartz tube flame atomic absorption spectrometry with switchable liquid–liquid microextraction after preconcentration using a Schiff base ligand

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study presents a green analytical method for palladium determination by slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) following switchable liquid–liquid microextraction (SLLME). Efficient extraction of palladium was facilitated by complexation with a Schiff base ligand, synthesized specifically for this study. A three-stage thorough optimization procedure was carried out to boost the absorbance output of palladium. Complex formation was the first stage, and parameters evaluated included buffer solution pH and amount, concentration of ligand, and mixing period. The amount of switchable solvent and concentration and amount of sodium hydroxide and acid amount were optimized in the second stage. Optimization of sample and fuel flow rates and SQT parameters completed the third stage of optimization, and all optimum parameters were used to determine analytical performance of the method. The method had a broad linear dynamic range, and the calibration plots showed good linearity with R2 values greater than 0.9991. The limits of detection and quantification of the SLLME-SQT-FAAS method were 15 and 50 μg/L, respectively. The precision of the method, expressed as percent relative standard deviation, was below 9.0% for all measurements. Spiked recovery results performed for a palladium electroplating bath solution gave poor results when quantified against aqueous calibration standards. Matrix matching was therefore used to improve recovery results which ranged between 97 and 105% for four different spike concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afzali, D., Jamshidi, R., Ghaseminezhad, S., & Afzali, Z. (2012). Preconcentration procedure trace amounts of palladium using modified multiwalled carbon nanotubes sorbent prior to flame atomic absorption spectrometry: 1st nano update. Arabian Journal of Chemistry, 5(4), 461–466. https://doi.org/10.1016/j.arabjc.2011.01.017.

    Article  CAS  Google Scholar 

  • Ataman, O. Y. (2008). Vapor generation and atom traps: atomic absorption spectrometry at the ng/L level. Spectrochimica Acta Part B: Atomic Spectroscopy, 63(8), 825–834. https://doi.org/10.1016/j.sab.2008.03.013.

    Article  CAS  Google Scholar 

  • Biparva, P., & Matin, A. A. (2012). Microextraction techniques as a sample preparation step for metal analysis. In Atomic absorption spectroscopy: InTech.

  • Bodur, S., Erarpat, S., Selali Chormey, D., Büyükpınar, Ç., & Bakırdere, S. (2018). Determination of bismuth in bottled and mineral water samples at trace levels by T-shaped slotted quartz tube-atom trap-flame atomic absorption spectrometry. Analytical Letters, 1–10. https://doi.org/10.1080/00032719.2018.1477790.

  • Büyükpınar, Ç., Maltepe, E., Chormey, D. S., San, N., & Bakırdere, S. (2017). Determination of nickel in water and soil samples at trace levels using photochemical vapor generation-batch type ultrasonication assisted gas liquid separator-atomic absorption spectrometry. Microchemical Journal, 132, 167–171. https://doi.org/10.1016/j.microc.2017.01.024.

    Article  CAS  Google Scholar 

  • Chormey, D. S., Büyükpınar, Ç., Turak, F., Komesli, O. T., & Bakırdere, S. (2017). Simultaneous determination of selected hormones, endocrine disruptor compounds, and pesticides in water medium at trace levels by GC-MS after dispersive liquid-liquid microextraction. [journal article]. Environmental Monitoring and Assessment, 189(6), 277. https://doi.org/10.1007/s10661-017-6003-6.

    Article  Google Scholar 

  • Citak, D., & Tuzen, M. (2015). Ultrasonication ionic liquid-based dispersive liquid–liquid microextraction of palladium in water samples and determination of microsampler system-assisted FAAS. Desalination and Water Treatment, 53(10), 2686–2691. https://doi.org/10.1080/19443994.2013.868838.

    Article  CAS  Google Scholar 

  • de Almeida Bezerra, M., Zezzi Arruda, M. A., & Costa Ferreira, S. L. (2005). Cloud point extraction as a procedure of separation and pre-concentration for metal determination using spectroanalytical techniques: a review. [review]. Applied Spectroscopy Reviews, 40(4), 269–299. https://doi.org/10.1080/05704920500230880.

    Article  Google Scholar 

  • Erarpat, S., Özzeybek, G., Chormey, D. S., & Bakırdere, S. (2017). Determination of lead at trace levels in mussel and sea water samples using vortex assisted dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry. Chemosphere, 189, 180–185. https://doi.org/10.1016/j.chemosphere.2017.09.072.

    Article  CAS  Google Scholar 

  • Firat, M., Bodur, S., Tisli, B., Ozlu, C., Chormey, D. S., Turak, F., et al. (2018). Vortex-assisted switchable liquid-liquid microextraction for the preconcentration of cadmium in environmental samples prior to its determination with flame atomic absorption spectrometry. Environmental Monitoring and Assessment, 190(7), 393. https://doi.org/10.1007/s10661-018-6786-0.

    Article  Google Scholar 

  • Hasegawa, H., Barua, S., Wakabayashi, T., Mashio, A., Maki, T., Furusho, Y., & Rahman, I. M. M. (2018). Selective recovery of gold, palladium, or platinum from acidic waste solution. Microchemical Journal, 139, 174–180. https://doi.org/10.1016/j.microc.2018.02.025.

    Article  CAS  Google Scholar 

  • Kasa, N. A., Chormey, D. S., Büyükpınar, Ç., Turak, F., Budak, T. B., & Bakırdere, S. (2017). Determination of cadmium at ultratrace levels by dispersive liquid-liquid microextraction and batch type hydride generation atomic absorption spectrometry. Microchemical Journal, 133, 144–148. https://doi.org/10.1016/j.microc.2017.03.035.

    Article  CAS  Google Scholar 

  • Kaya, G., & Yaman, M. (2008). Online preconcentration for the determination of lead, cadmium and copper by slotted tube atom trap (STAT)-flame atomic absorption spectrometry. Talanta, 75(4), 1127–1133. https://doi.org/10.1016/j.talanta.2008.01.008.

    Article  CAS  Google Scholar 

  • Kokya, T. A., & Farhadi, K. (2009). Optimization of dispersive liquid–liquid microextraction for the selective determination of trace amounts of palladium by flame atomic absorption spectroscopy. Journal of Hazardous Materials, 169(1), 726–733. https://doi.org/10.1016/j.jhazmat.2009.04.005.

    Article  CAS  Google Scholar 

  • Łobiński, R., & Marczenko, Z. (1996). Separation and preconcentration. In S. G. Weber (Ed.), Comprehensive Analytical Chemistry (Vol. 30, pp. 17–43): Elsevier.

  • Memon, Z. M., Yilmaz, E., & Soylak, M. (2017). Switchable solvent based green liquid phase microextraction method for cobalt in tobacco and food samples prior to flame atomic absorption spectrometric determination. Journal of Molecular Liquids, 229, 459–464. https://doi.org/10.1016/j.molliq.2016.12.098.

    Article  CAS  Google Scholar 

  • Nakajima, J., Ohno, M., Chikama, K., Seki, T., & Oguma, K. (2009). Determination of traces of palladium in stream sediment and auto catalyst by FI-ICP-OES using on-line separation and preconcentration with QuadraSil TA. Talanta, 79(4), 1050–1054. https://doi.org/10.1016/j.talanta.2009.02.035.

    Article  CAS  Google Scholar 

  • Panhwar, A. H., Kazi, T. G., Naeemullah, Afridi, H. I., Shah, F., Arain, M. B., et al. (2016). Evaluated the adverse effects of cadmium and aluminum via drinking water to kidney disease patients: application of a novel solid phase microextraction method. Environmental Toxicology and Pharmacology, 43, 242–247, doi:https://doi.org/10.1016/j.etap.2016.03.017.

  • Pérez-Álvarez, E. P., Garcia, R., Barrulas, P., Dias, C., Cabrita, M. J., & Garde-Cerdán, T. (2019). Classification of wines according to several factors by ICP-MS multi-element analysis. Food Chemistry, 270, 273–280. https://doi.org/10.1016/j.foodchem.2018.07.087.

    Article  CAS  Google Scholar 

  • Rojas, F. S., Ojeda, C. B., & Pavón, J. M. C. (2006). Automated on-line separation preconcentration system for palladium determination by graphite furnace atomic absorption spectrometry and its application to palladium determination in environmental and food samples. Talanta, 70(5), 979–983. https://doi.org/10.1016/j.talanta.2006.05.048.

    Article  CAS  Google Scholar 

  • Runge, J., Heringer, O. A., Ribeiro, J. S., & Biazati, L. B. (2019). Multi-element rice grains analysis by ICP OES and classification by processing types. Food Chemistry, 271, 419–424. https://doi.org/10.1016/j.foodchem.2018.07.162.

    Article  CAS  Google Scholar 

  • Sakaguchi, R. L., & Powers, J. M. (2012). Restorative materials—metals. In R. L. Sakaguchi, & J. M. Powers (Eds.), Craig’s restorative dental materials (Thirteenth Edition) (pp. 199–251). Saint Louis: Mosby.

  • Soylak, M., Khan, M., & Yilmaz, E. (2016). Switchable solvent based liquid phase microextraction of uranium in environmental samples: a green approach. Analytical Methods, 8(5), 979–986. https://doi.org/10.1039/C5AY02631H.

    Article  CAS  Google Scholar 

  • Tavallali, H., Yazdandoust, S., & Yazdandoust, M. (2010). Cloud point extraction for the preconcentration of silver and palladium in real samples and determination by atomic absorption spectrometry. CLEAN – Soil, Air, Water, 38(3), 242–247. https://doi.org/10.1002/clen.200900207.

    Article  CAS  Google Scholar 

  • Titretir, S., Kendüzler, E., Arslan, Y., Kula, İ., Bakırdere, S., & Ataman, O. Y. (2008). Determination of antimony by using tungsten trap atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 63(8), 875–879. https://doi.org/10.1016/j.sab.2008.03.021.

    Article  CAS  Google Scholar 

  • Turan, N. B., Chormey, D. S., Büyükpınar, Ç., Engin, G. O., & Bakirdere, S. (2017). Quorum sensing: little talks for an effective bacterial coordination. TrAC Trends in Analytical Chemistry, 91, 1–11. https://doi.org/10.1016/j.trac.2017.03.007.

    Article  CAS  Google Scholar 

  • Wysocka, I., & Vassileva, E. (2016). Determination of cadmium, copper, mercury, lead and zinc mass fractions in marine sediment by isotope dilution inductively coupled plasma mass spectrometry applied as a reference method. Microchemical Journal, 128, 198–207. https://doi.org/10.1016/j.microc.2016.05.002.

    Article  CAS  Google Scholar 

  • Xia, L., Wu, Y., & Hu, B. (2007). Hollow-fiber liquid-phase microextraction prior to low-temperature electrothermal vaporization ICP-MS for trace element analysis in environmental and biological samples. Journal of Mass Spectrometry, 42(6), 803–810. https://doi.org/10.1002/jms.1216.

    Article  CAS  Google Scholar 

  • Yu, H., Ai, X., Xu, K., Zheng, C., & Hou, X. (2016). UV-assisted Fenton digestion of rice for the determination of trace cadmium by hydride generation atomic fluorescence spectrometry. Analyst, 141(4), 1512–1518.

    Article  CAS  Google Scholar 

  • Yusop, R. M., Unciti-Broceta, A., Johansson, E. M. V., Sánchez-Martín, R. M., & Bradley, M. (2011). Palladium-mediated intracellular chemistry. [Article]. Nature Chemistry, 3, 239–243. https://doi.org/10.1038/nchem.981 https://www.nature.com/articles/nchem.981#supplementary-information.

    Article  CAS  Google Scholar 

  • Zaman, B. T., Bakırdere, E. G., Kasa, N. A., Deniz, S., Sel, S., Chormey, D. S., & Bakırdere, S. (2018). Development of an efficient and sensitive analytical method for the determination of copper at trace levels by slotted quartz tube atomic absorption spectrometry after vortex-assisted dispersive liquid-liquid microextraction in biota and water samples using a novel ligand. [journal article]. Environmental Monitoring and Assessment, 190(7), 437. https://doi.org/10.1007/s10661-018-6735-y.

    Article  Google Scholar 

  • Zhang, N., Shen, K., Yang, X., Li, Z., Zhou, T., Zhang, Y., Sheng, Q., & Zheng, J. (2018). Simultaneous determination of arsenic, cadmium and lead in plant foods by ICP-MS combined with automated focused infrared ashing and cold trap. Food Chemistry, 264, 462–470. https://doi.org/10.1016/j.foodchem.2018.05.058.

    Article  CAS  Google Scholar 

  • Zhou, J., Xu, S., Dong, X., Chen, Z., & Zhao, W. (2018). Near-infrared off-on fluorescent probe for fast and selective detection of palladium(II) in living cells. Journal of Photochemistry and Photobiology A: Chemistry, 355, 158–164. https://doi.org/10.1016/j.jphotochem.2017.09.058.

    Article  CAS  Google Scholar 

  • Zhou, S.-Y., Song, N., Liu, S.-X., Chen, D.-X., Jia, Q., & Yang, Y.-W. (2014). Separation and preconcentration of gold and palladium ions with a carboxylated pillar[5]arene derived sorbent prior to their determination by flow injection FAAS. [journal article]. Microchimica Acta, 181(13), 1551–1556. https://doi.org/10.1007/s00604-014-1229-2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emine Gülhan Bakırdere.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fırat, M., Bakırdere, E.G. An accurate and sensitive analytical strategy for the determination of palladium in aqueous samples: slotted quartz tube flame atomic absorption spectrometry with switchable liquid–liquid microextraction after preconcentration using a Schiff base ligand. Environ Monit Assess 191, 129 (2019). https://doi.org/10.1007/s10661-019-7252-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7252-3

Keywords

Navigation