Skip to main content

Advertisement

Log in

Identifying potential distributions of 10 invasive alien trees: implications for conservation management of protected areas

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Tree invasion has the potential to negatively affect biodiversity and ecosystems, with invasive alien trees (IATs) expanding widely in protected areas (PAs) across different habitats. Thus, the effectiveness of PAs might be reduced. Investigation of the distributions of IAT is urgently required to improve the effective conservation management of PAs. We projected the potential distributions of 10 IATs, which included Acacia mearnsii, Ardisia elliptica, Cecropia peltata, Cinchona pubescens, Leucaena leucocephala, Melaleuca quinquenervia, Miconia calvescens, Morella faya, Prosopis glandulosa, and Spathodea campanulata, that have a serious influence on global biodiversity and assessed the distribution possibilities of these IATs in PAs based on the PA categories of the International Union for Conservation of Nature (IUCN). The overall potential distributions of these 10 IATs included Latin America, central and southern Africa, southeastern Asia, eastern Australia and New Zealand, and western Europe. Annual mean temperature, temperature seasonality, annual precipitation, and soil bulk density were found to be important environmental variables for the potential distributions of these IATs. Overall, A. mearnsii, A. elliptica, C. peltata, L. leucocephala, M. quinquenervia, M. calvescens, and S. campanulata were distributed mainly in the IUCN PA categories of national parks and PAs with sustainable use of natural resources. We proposed the following for conservation management of PAs: (1) completion of species inventories for PAs, (2) better understanding of factors driving invasions in PAs, (3) assessment of the efficiency of management within particular PAs, and (4) evaluation of changes in trends regarding plant invasions in PAs under climate change conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashley, R., Russell, D., & Swallow, B. (2006). The policy terrain in protected area landscapes: challenges for agroforestry in integrated landscape conservation. Biodiversity and Conservation, 15, 663–689.

    Article  Google Scholar 

  • Bradley, B. A., Blumenthal, D. M., Wilcove, D. S., & Ziska, L. H. (2010). Predicting plant invasions in an era of global change. Trends in Ecology & Evolution, 25, 310–318.

    Article  Google Scholar 

  • Braun, M., Schindler, S., & Essl, F. (2016). Distribution and management of invasive alien plant species in protected areas in Central Europe. Journal for Nature Conservation, 33, 48–57.

    Article  Google Scholar 

  • Bromilow, C. (1995). Problem plants of South Africa (pp. 1–315). Arcadia: Briza Publications.

    Google Scholar 

  • Chape, S., Harrison, J., Spalding, M., & Lysenko, I. (2005). Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 443–455.

    Article  CAS  Google Scholar 

  • Chiou, C. R., Wang, H. H., Chen, Y. J., Grant, W. E., & Lu, M. L. (2013). Modeling potential range expansion of the invasive shrub Leucaena leucocephala in the Hengchun peninsula, Taiwan. Invasive Plant Science and Management, 6, 492–501.

    Article  Google Scholar 

  • Cholongitas, E., Senzolo, M., Patch, D., Shaw, S., Hui, C., & Burroughs, A. K. (2006). Scoring systems for assessing prognosis in critically ill adult cirrhotics. Alimentary Pharmacology & Therapeutics, 24, 453–464.

    Article  CAS  Google Scholar 

  • Coetzee, B. W., Gaston, K. J., & Chown, S. L. (2014). Local scale comparisons of biodiversity as a test for global protected area ecological performance: a meta-analysis. PLoS One, 9, e105824.

    Article  Google Scholar 

  • Dai, G., Yang, J., Lu, S., Huang, C., Jin, J., Jiang, P., & Yan, P. (2018). The potential impact of invasive woody oil plants on protected areas in China under future climate conditions. Scientific Reports, 8, 1041.

    Article  Google Scholar 

  • Di Minin, E., & Toivonen, T. (2015). Global protected area expansion: creating more than paper parks. BioScience, 65, 637–638.

    Article  Google Scholar 

  • Dickie, I. A., Bennett, B. M., Burrows, L. E., Nuñez, M. A., Peltzer, D. A., Porté, A., Richardson, D., Rejmánek, M., Rundel, P., & Van Wilgen, B. W. (2014). Conflicting values: ecosystem services and invasive tree management. Biological Invasions, 16, 705–719.

    Article  Google Scholar 

  • Donaldson, J. E., Hui, C., Richardson, D. M., Robertson, M. P., Webber, B. L., & Wilson, J. R. (2014). Invasion trajectory of alien trees: the role of introduction pathway and planting history. Global Change Biology, 20, 1527–1537.

    Article  Google Scholar 

  • Dudley, N. (2008). Guidelines for applying protected area management categories. Gland: IUCN.

    Book  Google Scholar 

  • Ervin, J. (2003). Rapid assessment of protected area management effectiveness in four countries. BioScience, 53, 833–841.

    Article  Google Scholar 

  • Foxcroft, L. C., Rouget, M., & Richardson, D. M. (2007). Risk assessment of riparian plant invasions into protected areas. Conservation Biology, 21, 412–421.

    Article  Google Scholar 

  • Foxcroft, L. C., Richardson, D. M., Rouget, M., & MacFadyen, S. (2009). Patterns of alien plant distribution at multiple spatial scales in a large national park: implications for ecology, management and monitoring. Diversity and Distributions, 15, 367–378.

    Article  Google Scholar 

  • Foxcroft, L. C., Jarošík, V., Pyšek, P., Richardson, D. M., & Rouget, M. (2011). Protected-area boundaries as filters of plant invasions. Conservation Biology, 25, 400–405.

    Google Scholar 

  • Foxcroft, L. C., Pyšek, P., Richardson, D. M., & Genovesi, P. (2013). Plant invasions in protected areas: patterns, problems and challenges, Invading Nature Series (Vol. 7). Berlin: Springer.

    Book  Google Scholar 

  • Foxcroft, L. C., Pyšek, P., Richardson, D. M., Genovesi, P., & MacFadyen, S. (2017). Plant invasion science in protected areas: progress and priorities. Biological Invasions, 19, 1353–1378.

    Article  Google Scholar 

  • Geldmann, J., Barnes, M., Coad, L., Craigie, I. D., Hockings, M., & Burgess, N. D. (2013). Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biological Conservation, 161, 230–238.

    Article  Google Scholar 

  • Grable, A.R. (1966). Soil aeration and plant growth. In Advances in Agronomy. Academic Press.

  • Hellmann, J. J., Byers, J. E., Bierwagen, B. G., & Dukes, J. S. (2008). Five potential consequences of climate change for invasive species. Conservation Biology, 22, 534–543.

    Article  Google Scholar 

  • Hui, C., Foxcroft, L. C., Richardson, D. M., & MacFadyen, S. (2013). A cross-scale approach for abundance estimation of invasive alien plants in a large protected area. Plant Invasions in Protected Areas (pp. 73–88). Berlin: Springer.

  • Hulme, P. E., Pyšek, P., Jarošík, V., Pergl, J., Schaffner, U., & Vila, M. (2013). Bias and error in understanding plant invasion impacts. Trends in Ecology & Evolution, 28, 212–218.

    Article  Google Scholar 

  • Jäger, H., Tye, A., & Kowarik, I. (2007). Tree invasion in naturally treeless environments: impacts of quinine (Cinchona pubescens) trees on native vegetation in Galápagos. Biological Conservation, 140, 297–307.

    Article  Google Scholar 

  • Jenkins, C. N., & Joppa, L. (2009). Expansion of the global terrestrial protected area system. Biological Conservation, 142, 2166–2174.

    Article  Google Scholar 

  • Klironomos, J. N. (2002). Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature, 417, 67–70.

    Article  CAS  Google Scholar 

  • Kraaij, T., Baard, J. A., Rikhotso, D. R., Cole, N. S., & van Wilgen, B. W. (2017). Assessing the effectiveness of invasive alien plant management in a large fynbos protected area. Bothalia-African Biodiversity & Conservation, 47, 1–11.

    Google Scholar 

  • Kull, C. A., & Rangan, H. (2008). Acacia exchanges: wattles, thorn trees, and the study of plant movements. Geoforum, 39, 1258–1272.

    Article  Google Scholar 

  • Kull, C. A., Shackleton, C. M., Cunningham, P. J., Ducatillon, C., Dufour-Dror, J-M., Esler, K. J., Friday, J. B., Gouveia, A. C., Griffin, A. R., Marchante, E., Midgley, S. J., Pauchard, A., Rangan, H., Richardson D. M., Rinaudo, T., Tassin, J., Urgenson, L. S., von Maltitz, G. P., Zenni, R. D., & Zylstra, M. J. (2011). Adoption, use and perception of Australian acacias around the world. Diversity and Distributions, 17(5), 822–836.

  • Kulmatiski, A., Beard, K. H., Stevens, J. R., & Cobbold, S. M. (2008). Plant–soil feedbacks: a meta-analytical review. Ecology Letters, 11, 980–992.

    Article  Google Scholar 

  • Le Maitre, D. C., Gaertner, M., Marchante, E., Ens, E. J., Holmes, P. M., Pauchard, A., O’Farrell, P. J., Rogers, A. M., Blanchard, R., Blignaut, J., & Richardson, D. M. (2011). Impacts of invasive Australian acacias: implications for management and restoration. Diversity and Distributions, 17, 1015–1029.

    Article  Google Scholar 

  • Lowe, S., Browne, M., Boudjelas, S., & De Poorter, M. (2000). 100 of the world’s worst invasive alien species: a selection from the global invasive species database (Vol. 12). Auckland: Invasive Species Specialist Group.

    Google Scholar 

  • Luque, G. M., Bellard, C., Bertelsmeier, C., Bonnaud, E., Genovesi, P., Simberloff, D., & Courchamp, F. (2014). The 100th of the world’s worst invasive alien species. Biological Invasions, 16, 981–985.

    Article  Google Scholar 

  • Maiorano, L., Amori, G., Montemaggiori, A., Rondinini, C., Santini, L., Saura, S., & Boitani, L. (2015). On how much biodiversity is covered in Europe by national protected areas and by the Natura 2000 network: insights from terrestrial vertebrates. Conservation Biology, 29, 986–995.

    Article  CAS  Google Scholar 

  • McGeoch, M. A., Chown, S. L., & Kalwij, J. M. (2006). A global indicator for biological invasion. Conservation Biology, 20, 1635–1646.

    Article  Google Scholar 

  • McKinney, M. L. (2002). Influence of settlement time, human population, park shape and age, visitation and roads on the number of alien plant species in protected areas in the USA. Diversity and Distributions, 8, 311–318.

    Article  Google Scholar 

  • Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36, 1058–1069.

    Article  Google Scholar 

  • Meyerson, L. A., & Mooney, H. A. (2007). Invasive alien species in an era of globalization. Frontiers in Ecology and the Environment, 5, 199–208.

    Article  Google Scholar 

  • Molina-Montenegro, M. A., & Naya, D. E. (2012). Latitudinal patterns in phenotypic plasticity and fitness-related traits: assessing the climatic variability hypothesis (CVH) with an invasive plant species. PLoS One, 7, e47620.

    Article  CAS  Google Scholar 

  • Mostert, E., Gaertner, M., Holmes, P. M., Rebelo, A. G., & Richardson, D. M. (2017). Impacts of invasive alien trees on threatened lowland vegetation types in the Cape Floristic Region, South Africa. South African Journal of Botany, 108, 209–222.

    Article  Google Scholar 

  • Oke, O. A., & Thompson, K. A. (2015). Distribution models for mountain plant species: the value of elevation. Ecological Modelling, 301, 72–77.

    Article  Google Scholar 

  • Pauchard, A., & Alaback, P. B. (2004). Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of South-Central Chile. Conservation Biology, 18, 238–248.

    Article  Google Scholar 

  • Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161–175.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.

    Article  Google Scholar 

  • Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., & Ferrier, S. (2009). Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19, 181–197.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: an open-source release of Maxent. Ecography, 40, 887–893.

    Article  Google Scholar 

  • Powell, K. I., Chase, J. M., & Knight, T. M. (2011). A synthesis of plant invasion effects on biodiversity across spatial scales. American Journal of Botany, 98, 539–548.

    Article  Google Scholar 

  • Pys̆ek, P., Jaros̆ík, V., & Kuc̆era, T. (2002). Patterns of invasion in temperate nature reserves. Biological Conservation, 104, 13–24.

    Article  Google Scholar 

  • Radosavljevic, A., & Anderson, R. P. (2014). Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography, 41, 629–643.

    Article  Google Scholar 

  • Richardson, D. M. (1998). Forestry trees as invasive aliens. Conservation Biology, 12, 18–26.

    Article  Google Scholar 

  • Richardson, D. M., & Rejmánek, M. (2011). Trees and shrubs as invasive alien species—a global review. Diversity and Distributions, 17, 788–809.

    Article  Google Scholar 

  • Richardson, D. M., Holmes, P. M., Esler, K. J., Galatowitsch, S. M., Stromberg, J. C., Kirkman, S. P., Pyšek, P., & Hobbs, R. J. (2007). Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Diversity and Distributions, 13, 126–139.

    Article  Google Scholar 

  • Richardson, D. M., van Wilgen, B. W., & Nunez, M. A. (2008). Alien conifer invasions in South America: short fuse burning? Biological Invasions, 10, 573–577.

    Article  Google Scholar 

  • Richardson, D. M., Iponga, D. M., Roura-Pascual, N., Krug, R. M., Milton, S. J., Hughes, G. O., & Thuiller, W. (2010). Accommodating scenarios of climate change and management in modelling the distribution of the invasive tree Schinus molle in South Africa. Ecography, 33, 1049–1061.

    Article  Google Scholar 

  • Richardson, D. M., Hui, C., Nunez, M. A., & Pauchard, A. (2014). Tree invasions: patterns, processes, challenges and opportunities. Biological Invasions, 16, 473–481.

    Article  Google Scholar 

  • Richardson, D. M., Le Roux, J. J., & Wilson, J. R. (2015). Australian acacias as invasive species: lessons to be learnt from regions with long planting histories. Southern Forests: A Journal of Forest Science, 77, 31–39.

    Article  Google Scholar 

  • Rouget, M., & Richardson, D. M. (2003). Understanding patterns of plant invasion at different spatial scales: quantifying the roles of environment and propagule pressure. Plant Invasions: Ecological Threats and Management Solutions (pp. 3–15). Leiden, the Netherlands: Backhuys Publishers.

  • Rundel, P. W., Dickie, I. A., & Richardson, D. M. (2014). Tree invasions into treeless areas: mechanisms and ecosystem processes. Biological Invasions, 16, 663–675.

    Article  Google Scholar 

  • Seabloom, E. W., Williams, J. W., Slayback, D., Stoms, D. M., Viers, J. H., & Dobson, A. P. (2006). Human impacts, plant invasion, and imperiled plant species in California. Ecological Applications, 16, 1338–1350.

    Article  Google Scholar 

  • Shackleton, R. T., Le Maitre, D. C., van Wilgen, B. W., & Richardson, D. M. (2016). Identifying barriers to effective management of widespread invasive alien trees: Prosopis species (mesquite) in South Africa as a case study. Global Environmental Change, 38, 183–194.

    Article  Google Scholar 

  • Siemann, E., & Rogers, W. E. (2003). Changes in light and nitrogen availability under pioneer trees may indirectly facilitate tree invasions of grasslands. Journal of Ecology, 91, 923–931.

    Article  Google Scholar 

  • Slodowicz, D., Descombes, P., Kikodze, D., Broennimann, O., & Müller-Schärer, H. (2018). Areas of high conservation value at risk by plant invaders in Georgia under climate change. Ecology and Evolution, 8, 4431–4442.

    Article  Google Scholar 

  • Syfert, M. M., Smith, M. J., & Coomes, D. A. (2013). The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS One, 8, e55158.

    Article  CAS  Google Scholar 

  • Symes, W. S., Rao, M., Mascia, M. B., & Carrasco, L. R. (2016). Why do we lose protected areas? Factors influencing protected area downgrading, downsizing and degazettement in the tropics and subtropics. Global Change Biology, 22, 656–665.

    Article  Google Scholar 

  • Thalmann, D. J. K., Kikodze, D., Khutsishvili, M., Kharazishvili, D., Guisan, A., Broennimann, O., & Müller-Schärer, H. (2015). Areas of high conservation value in Georgia: present and future threats by invasive alien plants. Biological Invasions, 17, 1041–1054.

    Article  Google Scholar 

  • Thuiller, W., Richardson, D. M., Pyšek, P., Midgley, G. F., Hughes, G. O., & Rouget, M. (2005). Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 11, 2234–2250.

    Article  Google Scholar 

  • Turner, C. E., Center, T. D., Burrows, D. W., & Buckingham, G. R. (1997). Ecology and management of Melaleuca quinquenervia, an invader of wetlands in Florida, USA. Wetlands Ecology and Management, 5, 165–178.

    Article  Google Scholar 

  • Unger, P. W., & Kaspar, T. C. (1994). Soil compaction and root growth: a review. Agronomy Journal, 86, 759–766.

    Article  Google Scholar 

  • VanDerWal, J., Shoo, L. P., Graham, C., & Williams, S. E. (2009). Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecological Modelling, 220, 589–594.

    Article  Google Scholar 

  • Venter, O., Fuller, R. A., Segan, D. B., Carwardine, J., Brooks, T., Butchart, S. H., Marco, M. D., Iwamura, T., Joseph, L., O’Grady, D., Possingham, H. P., Rondinini, C., Smith, R. J., & Possingham, H. P. (2014). Targeting global protected area expansion for imperiled biodiversity. PLoS Biology, 12, e1001891.

    Article  Google Scholar 

  • Vicente, J. R., Fernandes, R. F., Randin, C. F., Broennimann, O., Gonçalves, J., Marcos, B., Pôças, I., Alves, P., Guisan, A., & Honrado, J. P. (2013). Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions. Journal of Environmental Management, 131, 185–195.

    Article  CAS  Google Scholar 

  • Wan, J. Z., & Wang, C. J. (2018). Expansion risk of invasive plants in regions of high plant diversity: a global assessment using 36 species. Ecological Informatics, 46, 8–18.

    Article  Google Scholar 

  • Wan, J. Z., Wang, C. J., & Yu, F. H. (2017). Modeling impacts of human footprint and soil variability on the potential distribution of invasive plant species in different biomes. Acta Oecologica, 85, 141–149.

    Article  Google Scholar 

  • Wang, C. J., Wan, J. Z., & Zhang, Z. X. (2017a). Expansion potential of invasive tree plants in ecoregions under climate change scenarios: an assessment of 54 species at a global scale. Scandinavian Journal of Forest Research, 32, 663–670.

    Article  Google Scholar 

  • Wang, C. J., Wan, J. Z., Qu, H., & Zhang, Z. X. (2017b). Modelling plant invasion pathways in protected areas under climate change: implication for invasion management. Web Ecology, 17, 69–77.

    Article  Google Scholar 

  • Van Wilgen, B. W. (2015). Plantation forestry and invasive pines in the Cape Floristic Region: Towards conflict resolution. South African Journal of Science, 111, 1–2

  • van Wilgen, B. W., & Richardson, D. M. (2014). Challenges and trade-offs in the management of invasive alien trees. Biological Invasions, 16, 721–734.

    Article  Google Scholar 

  • van Wilgen, B. W., Dyer, C., Hoffmann, J. H., Ivey, P., Le Maitre, D. C., Moore, J. L., Richardson, D. M., Rouget, M., Wannenburgh, A., & Wilson, J. R. (2011). National-scale strategic approaches for managing introduced plants: insights from Australian acacias in South Africa. Diversity and Distributions, 17, 1060–1075.

    Article  Google Scholar 

  • van Wilgen, B. W., Forsyth, G. G., Le Maitre, D. C., Wannenburgh, A., Kotzé, J. D., van den Berg, E., & Henderson, L. (2012). An assessment of the effectiveness of a large, national-scale invasive alien plant control strategy in South Africa. Biological Conservation, 148, 28–38.

    Article  Google Scholar 

  • van Wilgen, B. W., Davies, S. J., & Richardson, D. M. (2014). Invasion science for society: A decade of contributions from the Centre for Invasion Biology. South African Journal of Science, 110, 1–12.

  • van Wilgen, B. W., Fill, J. M., Baard, J., Cheney, C., Forsyth, A. T., & Kraaij, T. (2016). Historical costs and projected future scenarios for the management of invasive alien plants in protected areas in the Cape Floristic Region. Biological Conservation, 200, 168–177.

    Article  Google Scholar 

  • Willis, C. G., Ruhfel, B. R., Primack, R. B., Miller-Rushing, A. J., Losos, J. B., & Davis, C. C. (2010). Favorable climate change response explains non-native species’ success in Thoreau’s woods. PLoS One, 5, e8878.

    Article  Google Scholar 

  • Zenni, R. D., Lamy, J. B., Lamarque, L. J., & Porté, A. J. (2014). Adaptive evolution and phenotypic plasticity during naturalization and spread of invasive species: implications for tree invasion biology. Biological Invasions, 16, 635–644.

    Article  Google Scholar 

Download references

Acknowledgements

We thank for the helpful comments of two reviewers on improvement of our early manuscript.

Funding

This work has been supported by the National Natural Science Foundation of China (Nos. 31800464 and 31800449).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Jing Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(ZIP 32585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, JZ., Zhang, ZX. & Wang, CJ. Identifying potential distributions of 10 invasive alien trees: implications for conservation management of protected areas. Environ Monit Assess 190, 739 (2018). https://doi.org/10.1007/s10661-018-7104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7104-6

Keywords

Navigation