Skip to main content

Advertisement

Log in

Spatial and temporal variability of soil moisture in relation with topographic and meteorological factors in south of Ardabil Province, Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This research has been tried to evaluate the spatial and temporal variability of surface soil moisture (SM) in a semi-arid and cold region of Ardabil Province in Iran with an area of about 10,000 km2. The used SM data is the SMAP Enhanced L2 Radiometer Half-Orbit 9 km Soil Moisture, provided by NASA. The study area was subdivided into 120 locations consisting 10 × 12 grids, matching with the pixels of the SMAP images. In order to evaluate the spatial variations of SM, the relation of mean SM with coefficient of variation and standard deviation has been evaluated and, then, the representative location for mean SM of the area has been identified using the index of temporal stability. Moreover, the effect of topographic factors (elevation, slope, and aspect) on spatial variations of SM, and the effect of meteorological factors (rainfall, sunshine hours, temperature, relative humidity, wind speed, and number of dry days) on temporal variations of SM have been investigated. The relation of mean SM with the coefficient of variation and standard deviation represented an exponentially negative and upper convex shape, respectively. The SM content of the representative location had a correlation with the mean SM of the area with the coefficient of determination value of 0.91. Of the three topographic factors, only the slope factor, and of the meteorological factors all of them except the wind speed have showed a significant relationship with SM spatial and temporal variations respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ali, G., Roy, A. G., & Legendre, P. (2010). Spatial relationships between soil moisture patterns and topographic variables at multiple scales in a humid temperate forested catchment. Water Resources Research, 46(10), 1–17.

    Article  Google Scholar 

  • Barretti, B. W., Dwyer, E., & Whelan, P. (2009). Soil moisture retrieval from active space borne microwave observations: an evaluation of current techniques. Remote Sensing, 1(3), 210–242.

    Article  Google Scholar 

  • Brocca, L., Morbidelli, R., Melone, F., & Moramarco, T. (2007). Soil moisture spatial variability in experimental areas of Central Italy. Journal of Hydrology, 333, 356–373.

    Article  Google Scholar 

  • Brocca, L., Melone, F., Moramarco, T., & Morbidelli, R. (2009). Soil moisture temporal stability over experimental areas in Central Italy. Geoderma, 148, 364–374.

    Article  Google Scholar 

  • Brocca, L., Melone, F., Moramarco, T., & Morbidelli, R. (2010). Spatial–temporal variability of soil moisture and its estimation across scales. Water Resources Research, 46, W02516. https://doi.org/10.1029/2009WR008016.

    Article  Google Scholar 

  • Cavagnaro, T. R. (2015). Soil moisture legacy effects: impacts on soil nutrients, plants and mycorrhizal responsiveness. Soil Biology and Biochemistry, 95, 173–179.

    Article  CAS  Google Scholar 

  • Chapin, F. C., McFarland, J., McGuire, A. D., Euskirchen, E. S., Ruess, R. W., & Knut Kielland, K. (2009). The changing global carbon cycle: linking plant–soil carbon dynamics to global consequences. Journal of Ecology, 97, 840–850.

    Article  CAS  Google Scholar 

  • Cho, E., & Choi, C. (2014). Regional scale spatio-temporal variability of soil moisture and its relationship with meteorological factors over the Korean Peninsula. Journal of Hydrology, 516, 317–329.

    Article  Google Scholar 

  • Choi, M., & Jacobs, J. M. (2011). Spatial soil moisture scaling structure during soil moisture experiment 2005. Hydrological Processes, 25(6), 926–932.

    Article  Google Scholar 

  • Entekhabi, D., Njoku, E. G., O’Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., & Johnson, J. (2010). The soil moisture active passive (SMAP) mission. Proceedings Of IEEE, 98(5), 704–716.

    Article  Google Scholar 

  • Famiglietti, J. S., Rudnicki, J. W., & Rodell, M. (1998). Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. Journal of Hydrology, 210, 259–281.

    Article  Google Scholar 

  • Famiglietti, J. S., Ryu, D., Berg, A. A., Rodell, M., & Jackson, T. J. (2008). Field observations of soil moisture variability across scales. Water Resource Research, 44, W01423. https://doi.org/10.1029/2006WR005804.

    Article  Google Scholar 

  • FAO, IIASA, ISRIC, ISS-CAS, JRC. (2009). Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria. Available online: http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12.

  • Giorgi, F., & Avissar, R. (1997). Representation of heterogeneity of effects in earth system modeling: experience from land surface modeling. Reviews of Geophysics, 35, 413–438.

    Article  CAS  Google Scholar 

  • Huang, S., Huang, Q., Leng, G., Zhao, M., & Meng, E. (2017). Variations in annual water-energy balance and their correlations with vegetation and soil moisture dynamics: a case study in the Wei River basin, China. Journal of Hydrology, 546, 515–525.

    Article  Google Scholar 

  • Jackson, T., O’Neill, P., Chan, S., Bindlish, R., Colliander, A., Chen, F., Dunbar, S., et al. (2016). Calibration and validation for the L2/3_SM_P version 4 and L2/3_SM_P_E version 1 data products, SMAP project, JPL D-56297. Pasadena: Jet Propulsion Laboratory.

    Google Scholar 

  • Kornelsen, K. C., & Coulibaly, P. (2013). Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. Journal of Hydrology, 476, 460–489.

    Article  Google Scholar 

  • Martínez, G., Pachepsky, Y. A., Vereecken, H., Hardelauf, H., Herbst, M., & Vanderlinden, K. (2013). Modeling local control effects on the temporal stability of soil water content. Journal of Hydrology, 481, 106–118.

    Article  Google Scholar 

  • Martínez-Fernández, J. M., & Ceballos, A. (2005). Mean soil moisture estimation using temporal stability analysis. Journal of Hydrology, 312, 28–38.

    Article  Google Scholar 

  • Mason, D. C., Garcia-Pintado, J., Cloke, H. L., & Dance, S. L. (2016). Evidence of a topographic signal in surface soil moisture derived from ENVISAT ASAR wide swath data. International Journal of Applied Earth Observation and Geoinformation, 45, 178–186.

    Article  Google Scholar 

  • Mohanty, B. P., Cosh, M. H., Lakshmi, V., & Montzka, C. (2017). Soil moisture remote sensing: state-of-the-science. Vadose. Zone Journal, 16(1). https://doi.org/10.2136/vzj2016.10.0105.

    Article  Google Scholar 

  • O’Neill, P. E., Chan, S., Njoku, E. G., Jackson, T., & Bindlish, R. (2018). SMAP enhanced L2 radiometer half-orbit 9 km EASE-grid soil moisture, version 2. Boulder: NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/K4A1SNL5DLON Accessed 20 Mar 2018.

    Book  Google Scholar 

  • Penna, D., Brocca, L., Borga, M., & Dalla Fontana, G. (2013). Soil moisture temporal stability at different depths on two alpine hillslopes during wet and dry periods. Journal of Hydrology, 477, 55–71.

    Article  Google Scholar 

  • Qiu, Y., Fu, B., Wang, J., & Chen, L. (2001). Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China. Journal of Hydrology, 240, 243–263.

    Article  Google Scholar 

  • Rosenbaum, U., Bogena, H. R., Herbst, M., Huisman, J. A., Peterson, T. J., Weuthen, A., Western, A. W., & Vereecken, H. (2012). Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resources Research, 48, W10544. https://doi.org/10.1029/2011WR011518.

    Article  Google Scholar 

  • Schmugge, T., Gloersen, P., Wilheit, T., & Geiger, F. (1974). Remote sensing of soil moisture with microwave radiometers. Journal of Geophysical Research, 79, 317–323.

    Article  Google Scholar 

  • Sur, C., Jung, Y., & Choi, M. (2013). Temporal stability and variability of field scale soil moisture on mountainous hillslopes in Northeast Asia. Geoderma, 207–208, 234–243.

    Article  Google Scholar 

  • Takagi, K., & Lin, H. S. (2011). Temporal dynamics of soil moisture spatial variability in the shale hills critical zone observatory. Vadose Zone Journal, 10, 832–842.

    Article  Google Scholar 

  • Vachaud, G. A., Passerat de Silans, A., Balabanis, P., & Vauclin, M. (1985). Temporal stability of spatially measured soil water probability density function. Soil Science Society of America Journal, 49(4), 822–828.

    Article  Google Scholar 

  • Van Dijk, A. I. J. M., & Renzullo, L. J. (2011). Water resource monitoring systems and the role of satellite observations. Hydrological Earth System Science, 15, 39–55.

    Article  Google Scholar 

  • Vanderlinden, K., Vereecken, H., Hardelauf, H., Herbst, M., Martinez, G., Cosh, M., & Pachepsky, Y. (2012). Temporal stability of soil water contents: a review of data and analyses. Vadose Zone Journal, 11(4). doi https://doi.org/10.2136/vzj2011.0178.

    Article  Google Scholar 

  • Zhang, J. G., Chen, H. S., Su, Y. R., Kong, X. L., Zhang, W., Shi, Y., Liang, H. B., & Shen, G. M. (2011). Spatial variability and patterns of surface soil moisture in a field plot of karst area in Southwest China. Plant Soil Environment, 57(9), 409–417.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhang, T., Zhou, P., Shao, Y., & Gao, S. (2017). Validation analysis of SMAP and AMSR2 soil moisture products over the United States using ground-based measurements. Remote Sensing, 9(2), 104. https://doi.org/10.3390/rs9020104.

    Article  Google Scholar 

  • Zhao, Y., Peth, S., Wang, X. Y., Lin, H., & Horn, R. (2010). Controls of surface soil moisture spatial patterns and their temporal stability in a semi-arid steppe. Hydrological Processes, 24(18), 2507–2519.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Vafakhah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majdar, H.A., Vafakhah, M., Sharifikia, M. et al. Spatial and temporal variability of soil moisture in relation with topographic and meteorological factors in south of Ardabil Province, Iran. Environ Monit Assess 190, 500 (2018). https://doi.org/10.1007/s10661-018-6887-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6887-9

Keywords

Navigation