Skip to main content

Advertisement

Log in

Monitoring and assessment of seasonal land cover changes using remote sensing: a 30-year (1987–2016) case study of Hamoun Wetland, Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The availability of Landsat data allows improving the monitoring and assessment of large-scale areas with land cover changes in rapid developing regions. Thus, we pretend to show a combined methodology to assess land cover changes (LCCs) in the Hamoun Wetland region (Iran) over a period of 30-year (1987–2016) and to quantify seasonal and decadal landscape and land use variabilities. Using the pixel-based change detection (PBCD) and the post-classification comparison (PCC), four land cover classes were compared among spring, summer, and fall seasons. Our findings showed for the water class a higher correlation between spring and summer (R2 = 0.94) than fall and spring (R2 = 0.58) seasons. Before 2000, ~ 50% of the total area was covered by bare soil and 40% by water. However, after 2000, more than 70% of wetland was transformed into bare soils. The results of the long-term monitoring period showed that fall season was the most representative time to show the inter-annual variability of LCCs monitoring and the least affected by seasonal-scale climatic variations. In the Hamoun Wetland region, land cover was highly controlled by changes in surface water, which in turn responded to both climatic and anthropogenic impacts. We were able to divide the water budget monitoring into three different ecological regimes: (1) a period of high water level, which sustained healthy extensive plant life, and approximately 40% of the total surface water was retained until the end of the hydrological year; (2) a period of drought during high evaporation rates was observed, and a mean wetland surface of about 85% was characterized by bare land; and (3) a recovery period in which water levels were overall rising, but they are not maintained from year to year. After a spring flood, in 2006 and 2013, grassland reached the highest extensions, covering till more than 20% of the region, and the dynamics of the ecosystem were affected by the differences in moisture. The Hamoun wetland region served as an important example and demonstration of the feedbacks between land cover and land uses, particularly as pertaining to water resources available to a rapidly expanding population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abd El-Kawy, O. R., Rod, J. K., Ismail, H. A., & Suliman, A. S. (2011). Land use and land cover change detection in the Western Nile Delta of Egypt using remote sensing data. Applied Geography, 31(2), 483–494.

    Article  Google Scholar 

  • Abdulaziz, A. M., José, M., Hurtado, J., & Al Douri, R. (2009). Application of multitemporal Landsat data to monitor land cover changes in the Eastern Nile Delta region, Egypt. International Journal of Remote Sensing, 30(11), 2977–2996.

    Article  Google Scholar 

  • Ahmady-Birgani, H., McQueen, K. G., Moeinaddini, M., & Naseri, H. (2017). Sand dune encroachment and desertification processes of the Rigboland Sand Sea, Central Iran. Scientific Reports, 7(1), 1523.

    Article  CAS  Google Scholar 

  • Ahmed, M., Al-Dousari, N., & Al-Dousari, A. (2016). The role of dominant perennial native plant species in controlling the mobile sand encroachment and fallen dust problem in Kuwait. Arabian Journal of Geosciences, 9(2), 134.

    Article  CAS  Google Scholar 

  • Alanis, N., Hernández-Madrigal, V. M., Cerda, A., Munoz-Rojas, M., Zavala, L. M., & Jordan, A. (2017). Spatial gradients of intensity and persistence of soil water repellency under different forest types in Central Mexico. Land Degradation & Development, 28(1), 317–327.

    Article  Google Scholar 

  • Alizadeh-Choobari, O., Zawar-Reza, P., & Sturman, A. (2014). The “wind of 120 days” and dust storm activity over the Sistan Basin. Atmospheric Research, 143, 328–341.

    Article  CAS  Google Scholar 

  • Al-Saady, Y., Merkel, B., Al-Tawash, B., & Al-Suhail, Q. (2015). Land use and land cover (LULC) mapping and change detection in the Little Zab River Basin (LZRB), Kurdistan region, NE Iraq and NW Iran. FOG - Freiberg Online Geoscience, 43, 1–32.

    Google Scholar 

  • Amato, F., Havel, J., Gad, A. A., & El-Zeiny, A. M. (2015). Remotely sensed soil data analysis using artificial neural networks: a case study of El-Fayoum depression, Egypt. ISPRS International Journal of Geographical Information, 4(2), 677–696.

    Article  Google Scholar 

  • Amiraslani, F., & Dragovich, D. (2013). Image acquisition for detection of vegetation change based on long-term rainfall in an arid rangeland in Western NSW, Australia. Environmental Earth Sciences, 70(1), 83–95.

    Article  Google Scholar 

  • Amri, K., Rabai, G., Benbakhti, I. M., & Khennouche, M. N. (2017). Mapping geology in Djelfa District (Saharan Atlas, Algeria), using Landsat 7 ETM+ data: an alternative method to discern lithology and structural elements. Arabian Journal of Geosciences, 10(4), 87.

    Article  CAS  Google Scholar 

  • Badreldin, N., & Goossens, R. (2014). Monitoring land use/land cover change using multi-temporal Landsat satellite images in an arid environment: a case study of El-Arish, Egypt. Arabian Journal of Geoscience, 7(5), 1671–1681.

    Article  Google Scholar 

  • Bakr, N., Weindorf, D. C., Bahnassy, M. H., Marei, S. M., & El-Badawi, M. M. (2010). Monitoring land cover changes in a newly reclaimed area of Egypt using multi-temporal Landsat data. Applied Geography, 30(4), 592–605.

    Article  Google Scholar 

  • Baron, J. S., Hartman, M. D., Kittel, T. G. F., Band, L. E., Ojima, D. S., & Lammers, R. B. (1998). Effects of land cover, water redistribution, and temperature on ecosystem processes in the south Platte basin. Ecological Applications, 8(4), 1037–1051.

    Article  Google Scholar 

  • Bateman, I. J., Harwood, A. R., Mace, G. M., Watson, R. T., Abson, D. J., Andrews, B., Binner, A., Crowe, A., Day, B. H., Dugdale, S., Fezzi, C., Foden, J., Hadley, D., Haines-Young, R., Hulme, M., Kontoleon, A., Lovett, A. A., Munday, P., Pascual, U., Paterson, J., Perino, G., Sen, A., Siriwardena, G., van Soest, D., & Termansen, M. (2013). Bringing ecosystem services into economic decision-making: land use in the United Kingdom. Science, 341(6141), 45–50.

    Article  CAS  Google Scholar 

  • Behrooz, R. D., Esmaili-Sari, A., Bahramifar, N., & Kaskaoutis, D. (2017). Analysis of the TSP, PM10 concentrations and water-soluble ionic species in airborne samples over Sistan, Iran during the summer dusty period. Atmospheric Pollution Research, 8(3), 403–417.

    Article  Google Scholar 

  • Bell, S., Alves, S., De Oliveira, E. S., & Zuin, A. (2010). Migration and land use change in Europe: a review. Living Reviews in Landscape Research, 4, 1–49.

    Article  Google Scholar 

  • Berendse, F., van Ruijven, J., Jongejans, E., & Keesstra, S. (2015). Loss of plant species diversity reduces soil erosion resistance. Ecosystems, 18(5), 881–888.

    Article  CAS  Google Scholar 

  • Bernardo, N., Watanabe, F., Rodrigues, T., & Alcântara, E. (2017). Atmospheric correction issues for retrieving total suspended matter concentrations in inland waters using OLI/Landsat-8 image. Advances in Space Research, 59(9), 2335–2348.

    Article  CAS  Google Scholar 

  • Bienes, R., Marques, M. J., Sastre, B., Garcia-Diaz, A., & Ruiz-Colmenero, M. (2016). Eleven years after shrub revegetation in semiarid eroded soils. Influence in soil properties. Geoderma, 273, 106–114.

    Article  CAS  Google Scholar 

  • Biro, K., Pradhan, B., Buchroithner, M., & Makeschin, F. (2013). Land use/land cover change analysis and its impact on soil properties in the northern part of Gadarif region, Sudan. Land Degredation and Development, 24(1), 90–102.

    Article  Google Scholar 

  • Bolstad, P. V., & Lillesand, T. (1991). Rapid maximum likelihood classification. Photogrammetric Engineering and Remote Sensing, 57(1), 67–74.

    Google Scholar 

  • Borrelli, P., Ballabio, C., Panagos, P., & Montanarella, L. (2014). Wind erosion susceptibility of European soils. Geoderma, 232, 471–478.

    Article  Google Scholar 

  • Borrelli, P., Panagos, P., Ballabio, C., Lugato, E., Weynants, M., & Montanarella, L. (2016). Towards a Pan European assessment of land susceptibility to wind erosion. Land Degradation & Development, 27(4), 1093–1105.

    Article  Google Scholar 

  • Briner, S., Elkin, C., Huber, R., & Grêt-Regamey, A. (2012). Assessing the impacts of economic and climate changes on land-use in mountain regions: a spatial dynamic modeling approach. Agriculture, Ecosystems & Environment, 149, 50–63.

    Article  Google Scholar 

  • Chappell, A., Webb, N. P., Guerschman, J. P., Thomas, D. T., Mata, G., Handcock, R. N., Leys, J. F., & Butler, H. J. (2018). Improving ground cover monitoring for wind erosion assessment using MODIS BRDF parameters. Remote Sensing of Environment, 204, 756–768.

    Article  Google Scholar 

  • Chen, M., & Liu, J. (2015). Historical trends of wetland areas in the agriculture and pasture interlaced zone: a case study of the Huangqihai Lake Basin in Northern China. Ecological Modelling, 318, 168–176.

    Article  Google Scholar 

  • Chen, X., Chen, J., Shi, Y., & Yamaguchi, Y. (2012). An automated approach for updating land cover maps based on integrated change detection and classification methods. ISPRS Journal of Photogrammetry and Remote Sensing, 71, 86–95.

    Article  Google Scholar 

  • Chuang, C.-W., Lin, C.-Y., Chien, C.-H., & Chou, W.-C. (2011). Application of Markov-chain model for vegetation restoration assessment at landslide areas caused by a catastrophic earthquake in Central Taiwan. Ecological Modelling, 222(3), 835–845.

    Article  Google Scholar 

  • Dahmardeh, M., Dahmardeh, M., Yazdani, S., & Piri, E. (2009). The socio-economic effects of Hamoon Lake in Sistan region of Iran. Journal of Food, Agriculture and Environment, 7(2), 799–802.

    Google Scholar 

  • Dawelbait, M., Dal Ferro, N., & Morari, F. (2017). Using Landsat images and spectral mixture analysis to assess drivers of 21-year LULC changes in Sudan. Land Degradation & Development, 28(1), 116–127.

    Article  Google Scholar 

  • Debolini, M., Schoorl, J. M., Temme, A., Galli, M., & Bonari, E. (2015). Changes in agricultural land use affecting future soil redistribution patterns: a case study in southern Tuscany (Italy). Land Degradation & Development, 26(6), 574–586.

    Article  Google Scholar 

  • Demissie, F., Yeshitila, K., Kindu, M., & Schneider, T. (2017). Land use/land cover changes and their causes in Libokemkem District of South Gonder, Ethiopia. Remote Sensing Applications: Society and Environment, 8, 224–230.

    Article  Google Scholar 

  • Dixon, M. J. R., Loh, J., Davidson, N. C., Beltrame, C., Freeman, R., & Walpole, M. (2016). Tracking global change in ecosystem area: the wetland extent trends index. Biological Conservation, 193, 27–35.

    Article  Google Scholar 

  • Dubovyk, O., Landmann, T., Dietz, A., & Menz, G. (2016). Quantifying the impacts of environmental factors on vegetation dynamics over climatic and management gradients of Central Asia. Remote Sensing, 8(7), 600.

    Article  Google Scholar 

  • Ekhtesasi, M., & Gohari, Z. (2013). Determining area affected by dust storms in different wind speeds, using satellite images. Desert, 17(2), 193–202.

    Google Scholar 

  • El Fellah, S., Rziza, M., & El Haziti, M. (2017). An efficient approach for filling gaps in Landsat 7 satellite images. IEEE Geoscience and Remote Sensing Letters, 14(1), 62–66.

    Article  Google Scholar 

  • Etehadi Abari, M., Majnounian, B., Malekian, A., & Jourgholami, M. (2017). Effects of forest harvesting on runoff and sediment characteristics in the Hyrcanian forests, northern Iran. European Journal of Forest Research, 136(2), 375–386.

    Article  Google Scholar 

  • Eydizadeh, A., Eskandary, G. R., & Hashemi, S. A. R. (2014). Some biological aspect of Carasobarbus luteus (Heckel, 1843) in Hoor Al-azim wetland. Scientific Journal of Biological Sciences, 3(3), 29–36.

    Google Scholar 

  • Faid, A. M., & Abdulaziz, A. M. (2012). Monitoring land use change associated land development using multitemporal Landsat data and geoinformatics in Kom Ombo area, South Egypt. International Journal of Remote Sensing, 33(22), 7024–7046.

    Article  Google Scholar 

  • Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated water extraction index: a new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35.

    Article  Google Scholar 

  • Flory, S. L., & D’Antonio, C. M. (2015). Taking the long view on the ecological effects of plant invasions. American Journal of Botany, 102(6), 817–818.

    Article  Google Scholar 

  • Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185–201.

    Article  Google Scholar 

  • Fu, C. (2003). Potential impacts of human-induced land cover change on East Asia monsoon. Global and Planetary Change, 37(3–4), 219–229.

    Google Scholar 

  • Gangjun, L. (1996). Land cover mapping in a salinised dryland farming area in southeastern Australia using Landsat TM data. Geocarto International, 11(4), 47–59.

    Article  Google Scholar 

  • Gessner, U., Naeimi, V., Klein, I., Kuenzer, C., Klein, D., & Dech, S. (2013). The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia. Global and Planetary Change, 110, Part A, 74–87.

    Article  Google Scholar 

  • Gevana, D., Camacho, L., Carandang, A., Camacho, S., & Im, S. (2015). Land use characterization and change detection of a small mangrove area in Banacon Island, Bohol, Philippines using a maximum likelihood classification method. Forest Science and Technology, 11(4), 197–205.

    Article  Google Scholar 

  • Goudie, A.S. (2013). Arid and semi-arid geomorphology. Cambridge University Press.

  • Hargalani, F. Z., Karbassi, A., Monavari, S. M., & Abroomand Azar, P. (2014). A novel pollution index based on the bioavailability of elements: a study on Anzali wetland bed sediments. Environmental Monitoring and Assessment, 186(4), 2329–2348.

    Article  CAS  Google Scholar 

  • Howard, S. M., & Lacasse, J. M. (2004). An evaluation of gap-filled Landsat SLC-off imagery for wildland fire burn severity mapping. Photogrammetric Engineering and Remote Sensing, 70(8), 877–880.

    Google Scholar 

  • Hueso-Gonzalez, P., Martínez-Murillo, J. F., & Ruiz-Sinoga, J. D. (2016). Effects of topsoil treatments on afforestation in a dry Mediterranean climate (southern Spain). Solid Earth, 7(5), 1479–1489.

    Article  Google Scholar 

  • Immerzeel, W. W., Kraaijenbrink, P. D. A., Shea, J. M., Shrestha, A. B., Pellicciotti, F., Bierkens, M. F. P., & De Jong, S. M. (2014). High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sensing of Environment, 150, 93–103.

    Article  Google Scholar 

  • Issanova, G., Abuduwaili, J., Galayeva, O., Semenov, O., & Bazarbayeva, T. (2015). Aeolian transportation of sand and dust in the Aral Sea region. International Journal of Environmental Science and Technology, 12(10), 3213–3224.

    Article  CAS  Google Scholar 

  • Jabbar, M. T., & Zhou, J. (2013). Environmental degradation assessment in arid areas: a case study from Basra Province, southern Iraq. Environmental Earth Sciences, 70(5), 2203–2214.

    Article  Google Scholar 

  • Jabbari, S., Khajedin, S. J., Jafari, R., & Soltani, S. (2015). Remote sensing technology for mapping and monitoring vegetation cover (case study: Semirom-Isfahan, Iran). Pollution, 1(2), 165–174.

    Google Scholar 

  • Jaleta, D., Mbilinyi, B., Mahoo, H., & Lemenih, M. (2016). Evaluation of land use/land cover changes and Eucalyptus expansion in Meja watershed, Ethiopia. Journal of Geography, Environment and Earth Science International, 7(3), 1–12.

    Article  Google Scholar 

  • Jones, H.G., Vaughan, R.A. (2010). Remote sensing of vegetation: principles, techniques, and applications. Oxford University Press.

  • Kafi, K. M., Shafri, H. Z. M., & Shariff, A. B. M. (2014). An analysis of LULC change detection using remotely sensed data; a case study of Bauchi City. IOP Conference Series: Earth and Environmental Science, 20, 012056.

    Article  Google Scholar 

  • Kairis, O., Karavitis, C., Salvati, L., Kounalaki, A., & Kosmas, K. (2015). Exploring the impact of overgrazing on soil erosion and land degradation in a dry Mediterranean agro-forest landscape (Crete, Greece). Arid Land Research and Management, 29(3), 360–374.

    Article  Google Scholar 

  • Karkon Varnosfaderani, M., Kharazmi, R., Nazari Samani, A., Rahdari, M. R., Matinkhah, S. H., & Aslinezhad, N. (2017). Distribution changes of woody plants in western Iran as monitored by remote sensing and geographical information system: a case study of Zagros forest. Journal of Forestry Research, 28(1), 145–153.

    Article  Google Scholar 

  • Kaskaoutis, D. G., Rashki, A., Houssos, E. E., Mofidi, A., Goto, D., Bartzokas, A., Francois, P., & Legrand, M. (2015). Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran. Climate Dynamics, 45(1–2), 407–424.

    Article  Google Scholar 

  • Kharazmi, R., Panidi, E. A., & Karkon, V. M. (2016). Assessment of dry land ecosystem dynamics based on time series of satellite images. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 13(5), 214–223 (In Russian).

    Article  Google Scholar 

  • Kharazmi, R., Abdollahi, A. A., Rahdari, M. R., & Karkon varnosfaderani, M. (2017a). Land cover monitoring and its impacts on land degradation and desertification trend using Landsat images (a case study of eastern Iran, Hamoun wetlands). Arid Regions Geographic Studies, 7(25), 64–75 (In Persian).

    Google Scholar 

  • Kharazmi, R., Panidi, E. A., & Chaban, L. N. (2017b). Assessment of arid ecosystems dynamics based on the results of automated processing of multispectral satellite imagery time series. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 14(3), 196–205 (In Russian).

    Article  Google Scholar 

  • Kiage, L. M., Liu, K. B., Walker, N. D., Lam, N., & Huh, O. K. (2007). Recent land cover/use change associated with land degradation in the Lake Baringo catchment, Kenya, East Africa: evidence from Landsat TM and ETM+. International Journal of Remote Sensing, 28(19), 4285–4309.

    Article  Google Scholar 

  • Kumar, P. J., Huan, T. L., Rossi, R. K., Yuan, Y., & Li, X. (2018). Color fusion of remote sensing images for imparting fluvial geomorphological features of river Yamuna and Ganga over Doon valley. Journal of Geomatics, 12(1), 270–286.

    Google Scholar 

  • Lasanta, T., Garcıa-Ruiz, J. M., Perez-Rontome, C., & Sancho-Marcen, C. (2000). Runoff and sediment yield in a semi-arid environment: the effect of land management after farmland abandonment. Catena, 38(4), 265–278.

    Article  Google Scholar 

  • Lasanta, T., Nadal-Romero, E., & Arnaez, J. (2015). Managing abandoned farmland to control the impact of re-vegetation on the environment. The state of the art in Europe. Environmental Science & Policy, 52, 99–109.

    Article  Google Scholar 

  • Li, J., Kandakji, T., Lee, J. A., Tatarko, J., Blackwell III, J., Gill, T. E., & Collins, J. D. (2017). Blowing dust and highway safety in the southwestern United States: characteristics of dust emission “hotspots” and management implications. Science of the Total Environment, 621, 1023–1032.

    Article  CAS  Google Scholar 

  • Lim, K., Treitz, P., Wulder, M., St-Onge, B., & Flood, M. (2003). LiDAR remote sensing of forest structure. Progress in Physical Geography, 27(1), 88–106.

    Article  Google Scholar 

  • Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–870.

    Article  Google Scholar 

  • Luo, G. P., Zhou, C. H., Chen, X., & Li, Y. (2008). A methodology of characterizing status and trend of land changes in oases: a case study of Sangong River watershed, Xinjiang, China. Journal of Environmental Management, 88(4), 775–783.

    Article  CAS  Google Scholar 

  • Luyssaert, S., Jammet, M., Stoy, P. C., Estel, S., Pongratz, J., Ceschia, E., Churkina, G., Don, A., Erb, K., Ferlicoq, M., Gielen, B., Grunwald, T., Houghton, R. A., Klumpp, K., Knohl, A., Kolb, T., Kuemmerle, T., Laurila, T., Lohila, A., Loustau, D., McGrath, M. J., Meyfroidt, P., Moors, E. J., Naudts, K., Novick, K., Otto, J., Pilegaard, K., Pio, C. A., Rambal, S., Rebmann, C., Ryder, J., Suyker, A. E., Varlagin, A., Wattenbach, M., & Dolman, A. J. (2014). Land management and land-cover change have impacts of similar magnitude on surface temperature. Nature Climate Change, 4(5), 389–393.

    Article  Google Scholar 

  • Maleki, S., Soffianian, A. R., Soltani Koupaei, S., Saatchi, S., Pourmanafi, S., & Sheikholeslam, F. (2016). Habitat mapping as a tool for water birds conservation planning in an arid zone wetland: the case study Hamun wetland. Ecological Engineering, 95, 594–603.

    Article  Google Scholar 

  • Maleki, S., Soffianian, A. R., Koupaei, S. S., Pourmanafi, S., & Saatchi, S. (2018). Wetland restoration prioritizing, a tool to reduce negative effects of drought; an application of multicriteria-spatial decision support system (MC-SDSS). Ecological Engineering, 112, 132–139.

    Article  Google Scholar 

  • Maman, S., Orlovsky, L., Blumberg, D. G., Berliner, P., & Mamedov, B. (2011). A landcover change study of takyr surfaces in Turkmenistan. Journal of Arid Environments, 75(9), 842–850.

    Article  Google Scholar 

  • Mandanici, E., & Bitelli, G. (2015). Multi-image and multi-sensor change detection for long-term monitoring of arid environments with Landsat series. Remote Sensing, 7, 14019–14038.

    Article  Google Scholar 

  • Matinfar, H. R., Panah, S. K. A., Zand, F., & Khodaei, K. (2013). Detection of soil salinity changes and mapping land cover types based upon remotely sensed data. Arabian Journal of Geosciences, 6(3), 913–919.

    Article  CAS  Google Scholar 

  • Mirzaei, M., Solgi, E., & Salmanmahiny, A. (2016). Assessment of impacts of land use changes on surface water using L-THIA model (case study: Zayandehrud river basin). Environmental Monitoring and Assessment, 188(12), 690.

    Article  CAS  Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (2000). The value of wetlands: importance of scale and landscape setting. Ecological Economics, 35(1), 25–33.

    Article  Google Scholar 

  • Moosavi, V., Moradi, H., Shamsi, S. R. F., & Shirmohammadi, B. (2014). Assessment of the planimetric morphology of barchan dunes. Catena, 120, 12–19.

    Article  Google Scholar 

  • Mousavi-Sabet, H., Gharaei, A., Nasrollahzade, A., Habibi, A., & Eagderi, S. (2014). Redescription of Paracobitis rhadinaea (Regan, 1906) from Sistan Basin, Iran (Teleostei: Nemacheiliidae). International Journal of Aquatic Biology, 2(5), 286–291.

    Google Scholar 

  • Munyati, C. (2000). Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remote sensing image dataset. International Journal of Remote Sensing, 21(9), 1787–1806.

    Article  Google Scholar 

  • Najafi, A., & Vatanfada, J. (2011). Environmental challenges in trans-boundary waters, case study: Hamoon Hirmand wetland (Iran and Afghanistan). International Journal of Water Resources and Arid Environments, 1(1), 16–24.

    Google Scholar 

  • Najafinasab, F., Karbassi, A. R., & Ghoddousi, J. (2015). Fuzzy analytic network process approach to evaluate land and sea criteria for land use planning in coastal areas. Ocean and Coastal Management, 116, 368–381.

    Article  Google Scholar 

  • Nazari Samani, A. A., Chen, Q., Khalighi, S., Wasson, R. J., & Rahdari, M. R. (2016a). Assessment of land use impact on hydraulic threshold conditions for gully head cut initiation. Hydrology and Earth System Sciences, 20(7), 3005–3012.

    Article  Google Scholar 

  • Nazari Samani, A. A., Khosravi, H., Mesbahzadeh, T., Azarakhshi, M., & Rahdari, M. R. (2016b). Determination of sand dune characteristics through geomorphometry and wind data analysis in Central Iran (Kashan Erg). Arabian Journal of Geosciences, 9(18), 716–731.

    Article  Google Scholar 

  • Nazari Samani, A. A., Wasson, R. J., Rahdari, M. R., & Moeini, A. (2016c). Quantifying eroding head cut detachment through flume experiments and hydraulic thresholds analysis. Environmental Earth Sciences, 75(21), 1424–1437.

    Article  Google Scholar 

  • Nearing, M. A., Polyakov, V. O., Nichols, M. H., Hernandez, M., Li, L., Zhao, Y., & Armendariz, G. (2017). Slope–velocity equilibrium and evolution of surface roughness on a stony hillslope. Hydrology and Earth System Sciences, 21(6), 3221–3229.

    Article  Google Scholar 

  • Okin, G. S., & Gu, J. (2015). The impact of atmospheric conditions and instrument noise on atmospheric correction and spectral mixture analysis of multispectral imagery. Remote Sensing of Environment, 164, 130–141.

    Article  Google Scholar 

  • Othman, Y., Steele, C., & Hilaire, R. S. (2018). Surface reflectance climate data records (CDRs) is a reliable Landsat ETM+ source to study chlorophyll content in pecan orchards. Journal of the Indian Society of Remote Sensing, 46(2), 211–218.

    Article  Google Scholar 

  • Padonou, E. A., Lykke, A. M., Bachmann, Y., Idohou, R., & Sinsin, B. (2017). Mapping changes in land use/land cover and prediction of future extension of bowé in Benin, West Africa. Land Use Policy, 69, 85–92.

    Article  Google Scholar 

  • Patino, J. E., & Estupinan-Suarez, L. M. (2016). Hotspots of wetland area loss in Colombia. Wetlands, 36(5), 935–943.

    Article  Google Scholar 

  • Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422.

    Article  CAS  Google Scholar 

  • Pourghasemi, H. R., Pradhan, B., & Gokceoglu, C. (2012). Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Natural Hazards, 63(2), 965–996.

    Article  Google Scholar 

  • Pulido-Fernández, M., Schnabel, S., Lavado-Contador, J. F., Mellado, I. M., & Pérez, R. O. (2013). Soil organic matter of Iberian open woodland rangelands as influenced by vegetation cover and land management. Catena, 109, 13–24.

    Article  CAS  Google Scholar 

  • Qin, Y., Xiao, X., Wang, J., Dong, J., Ewing, K., Hoagland, B., Hough, D. J., Fagin, T. D., Zou, Z., Geissler, G. L., Xian, G. Z., & Loveland, T. R. (2016). Mapping annual forest cover in sub-humid and semi-arid regions through analysis of Landsat and PALSAR imagery. Remote Sensing, 8(11), 933.

    Article  Google Scholar 

  • Rachael, F., Richard, T., Yi, L., & Simon, J. (2011). Landsat mapping of annual inundation (1979–2006) of the Macquarie marshes in semi-arid Australia. International Journal of Remote Sensing, 32(16), 4545–4569.

    Article  Google Scholar 

  • Rahdari, G. R., Rahdari, M. R., Fakhireh, A., Shahryari, A. R., & Khosravi, H. (2013). GIS-based monitoring and EWSs of desertification (case study; southeastern of Iran). International Journal of Advanced Biological and Biomedical Research, 1(10), 1185–1198.

    Google Scholar 

  • Rahman, M. T. (2016). Detection of land use/land cover changes and urban sprawl in Al-Khobar, Saudi Arabia: an analysis of multi-temporal remote sensing data. ISPRS International Journal of Geohraphical Information, 5(2), 15.

    Article  Google Scholar 

  • Ranjeet, J., Jiquan, C., Nan, L., & Burkhard, W. (2009). Land cover/land use change in semi-arid Inner Mongolia: 1992–2004. Environmental Research Letters, 4(4), 045010.

    Article  Google Scholar 

  • Rashki, A., Kaskaoutis, D. G., Goudie, A. S., & Kahn, R. A. (2013). Dryness of ephemeral lakes and consequences for dust activity: the case of the Hamoun drainage basin, southeastern Iran. Science of the Total Environment, 463, 552–564.

    Article  CAS  Google Scholar 

  • Rashki, N., Rahdari, G. R., & Rahdari, M. R. (2014). Identification of detachment zone facieses (case study: Konarak region). European Journal of Experimental Biology, 4(3), 108–114.

    Google Scholar 

  • Rebelo, A. J., Scheunders, P., Esler, K. J., & Meire, P. (2017). Detecting, mapping and classifying wetland fragments at a landscape scale. Remote Sensing Applications: Society and Environment, 8, 212–223.

    Article  Google Scholar 

  • Rezaei, R., & Ghofranfarid, M. (2018). Rural households’ renewable energy usage intention in Iran: extending the unified theory of acceptance and use of technology. Renewable Energy, 122, 382–391.

    Article  Google Scholar 

  • Rezaei Moghaddam, M. H., & Saghafi, M. (2006). A change detection application on the evolution of Kahak playa (South Khorasan province, Iran). Environmental Geology, 51(4), 565–579.

    Article  CAS  Google Scholar 

  • Rezazadeh, M., Irannejad, P., & Shao, Y. (2013). Climatology of the Middle East dust events. Aeolian Research, 10, 103–109.

    Article  Google Scholar 

  • Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., Helder, D., Irons, J. R., Johnson, D. M., Kennedy, R., et al. (2014). Landsat-8: science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154–172.

    Article  Google Scholar 

  • Ruan, R., Zhang, Y., & Zhou, Y. (2008). Change detection of wetland in Hongze Lake using a time series of remotely sensed imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 1545–1548.

    Google Scholar 

  • Sabr, A., Moeinaddini, M., Azarnivand, H., & Guinot, B. (2016). Assessment of land use and land cover change using spatiotemporal analysis of landscape: case study in south of Tehran. Environmental Monitoring and Assessment, 188(12), 691–705.

    Article  Google Scholar 

  • Sakieh, Y., & Salmanmahiny, A. (2016). Performance assessment of geospatial simulation models of land-use change a landscape metric-based approach. Environmental Monitoring and Assessment, 188(3), 169.

    Article  Google Scholar 

  • Santos, M. M., Machado, I. E. S., Carvalho, E. V., Viola, M. R., & Giongo, M. (2017). Estimation of forest parameters in Cerrado area from OLI Landsat 8 sensor. Floresta, 47(1), 75–83.

    Article  Google Scholar 

  • Schmugge, T. J., Kustas, W. P., Ritchie, J. C., Jackson, T. J., & Rango, A. (2002). Remote sensing in hydrology. Advances in Water Resources, 25(8), 1367–1385.

    Article  Google Scholar 

  • Schulz, J. J., Cayuela, L., Echeverria, C., Salas, J., & Rey Benayas, J. M. (2010). Monitoring land cover change of the dryland forest landscape of Central Chile (1975–2008). Applied Geography, 30(3), 436–447.

    Article  Google Scholar 

  • Shafie, H., Amiri, I., Shahriari, A. R., Fakhireh, A., Noori, S., & Hosseini, S. M. (2011). RS-based assessment of vegetation cover changes in sistan plain. African Journal of Social Sciences, 1, 159–167.

    Google Scholar 

  • Shajaat Ali, A. M. (2006). Rice to shrimp: land use/land cover changes and soil degradation in southwestern Bangladesh. Land Use Policy, 23(4), 421–435.

    Article  Google Scholar 

  • Sharifikia, M. (2013). Environmental challenges and drought hazard assessment of Hamoun Desert Lake in Sistan region, Iran, based on the time series of satellite imagery. Natural Hazards, 65(1), 201–217.

    Article  Google Scholar 

  • Shengbo, C., & Rao, P. (2008). Land degradation monitoring using multi temporal Landsat TM/ETM data in a transition zone between grassland and cropland of Northeast China. International Journal of Remote Sensing, 29(7), 2055–2073.

  • Siegal, B. S., & Gillespie, A. R. (1980). Remote sensing in geology, 702p. New York: Wiley.

    Google Scholar 

  • Silva, B., Alava-Nunez, P., Strobl, S., Beck, E., & Bendix, J. (2017). Area-wide evapotranspiration monitoring at the crown level of a tropical mountain rain forest. Remote Sensing of Environment, 194, 219–229.

    Article  Google Scholar 

  • Sosnowski, A., Ghoneim, E., Burke, J. J., Hines, E., & Halls, J. (2016). Remote regions, remote data: a spatial investigation of precipitation, dynamic land covers, and conflict in the Sudd wetland of South Sudan. Applied Geography, 69, 51–64.

    Article  Google Scholar 

  • Szczypta, C., Gascoin, S., Houet, T., Hagolle, O., Dejoux, J. F., Vigneau, C., & Fanise, P. (2015). Impact of climate and land cover changes on snow cover in a small Pyrenean catchment. Journal of Hydrology, 521, 84–99.

    Article  Google Scholar 

  • Tareq, S. M., Tanaka, N., & Ohta, K. (2004). Biomarker signature in tropical wetland: lignin phenol vegetation index (LPVI) and its implications for reconstructing the paleoenvironment. Science of the Total Environment, 324, 91–103.

    Article  CAS  Google Scholar 

  • The Ramsar Convention on wetlands (2014). The list of wetlands of international importance. http://archive.ramsar.org/pdf/sitelist.pdf.

  • Vahtmäe, E., & Kutser, T. (2013). Classifying the Baltic Sea shallow water habitats using image-based and spectral library methods. Remote Sensing, 5, 2451–2474.

    Article  Google Scholar 

  • Vekerdy, Z., Dost, R., Reinink, G., & Partow, H. (2006). History of environmental change in the Sistan Basin based on satellite image analysis: 1976–2005. Geneva: UNEP.

    Google Scholar 

  • Verburg, P. H., Neumann, K., & Nol, L. (2011). Challenges in using land use and land cover data for global change studies. Global Change Biology, 17(2), 974–989.

    Article  Google Scholar 

  • Verstappen, H.T. (1977). Remote sensing in geomorphology (No. 04; GB400. 42. R4, V4.). Elsevier Scientific Publishing Company.

  • Vesali Naseh, M. R., Karbassi, A. R., Ghazaban, F., & Baghvand, A. (2012a). Evaluation of heavy metal pollution in Anzali wetland, Guilan, Iran. Iranian Journal of Toxicology, 5(15), 565–576.

    Google Scholar 

  • Vesali Naseh, M. R., Karbassi, A. R., Ghazaban, F., Baghvand, A., & Mohammadizadeh, M. J. (2012b). Magntic susceptibility as a proxy to heavy metal content in the sediments of Anzali wetland, Iran. Iranian Journal of Environmental Health Science & Engineering, 9(1), 34–46.

    Article  CAS  Google Scholar 

  • Vogelmann, J. E., Gallant, A. L., Shi, H., & Zhu, Z. (2016). Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data. Remote Sensing of Environment, 185, 258–270.

    Article  Google Scholar 

  • Whitney, J.W. (2006). Geology, water, and wind in the lower Helmand basin, southern Afghanistan U.S. Geological Survey, Reston, Virginia, Retrieved 2010-08-31.

  • Wu, J. (2004). Effects of changing scale on landscape pattern analysis: scaling relations. Landscape Ecology, 19(2), 125–138.

    Article  Google Scholar 

  • Wulder, M. A., Masek, J. G., Cohen, W. B., Loveland, T. R., & Woodcock, C. E. (2012). Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment, 122, 2–10.

    Article  Google Scholar 

  • Xiao, L., Wang, J., Dang, Y., Cheng, Z., Huang, T., Zhao, J., Xu, Y., Huang, J., Xiao, Z., & Komatsu, G. (2017). A new terrestrial analogue site for Mars research: the Qaidam Basin, Tibetan Plateau (NW China). Earth-Science Reviews, 164, 84–101.

    Article  CAS  Google Scholar 

  • Yli-Pelkonen, V. (2008). Ecological information in the political decision making of urban land-use planning. Journal of Environmental Planning and Management, 51(3), 345–362.

    Article  Google Scholar 

  • Yousefi, S., Keesstra, S., Pourghasemi, H. R., Surian, N., & Mirzaee, S. (2017). Interplay between river dynamics and international borders: the Hirmand River between Iran and Afghanistan. Science of the Total Environment, 586, 492–501.

    Article  CAS  Google Scholar 

  • Yuan, Y., Li, B., Gao, X., Liu, H., Xu, L., & Zhou, C. (2016). A method of characterizing land-cover swap changes in the arid zone of China. Frontiers of Earth Science, 10(1), 74–86.

    Article  CAS  Google Scholar 

  • Zehtabian, G.R., Mashhadi, N., Khosravi, H., Pour Reza, M., Rahdari, M.R., Kharazmi, R. (2014). Assessment of anthropogenic effect on land degradation. Proceeding: Anthropogenic changes of environment and landscape in arid and semi-arid regions (GIAN), University of Tehran, Tehran, pp 117–1129.

  • Zewdie, W., & Csaplovics, E. (2015). Remote sensing based multi-temporal land cover classification and change detection in northwestern Ethiopia. European Journal of Remote Sensing, 48, 121–139.

    Article  Google Scholar 

  • Zezin, A. B., Mikheikin, S. V., Rogacheva, V. B., Zansokhova, M. F., Sybachin, A. V., & Yaroslavov, A. A. (2015). Polymeric stabilizers for protection of soil and ground against wind and water erosion. Advances in Colloid and Interface Science, 226, 17–23.

    Article  CAS  Google Scholar 

  • Zolfaghari, G. H., Delsooz, M., & Rajaee, S. (2016). Study of mercury pollution in water, sediments, and fish from Hamoon international wetland. Water and Wastewater, 27(105), 25–37 (In Persian).

Download references

Acknowledgments

We would like to show our gratitude to Dr. Mackenzie Day at the University of Washington, USA, for having valuable comments and sharing her pearls of wisdom with us about proofreading the manuscript during this research. Finally, we also express our sincere gratitude to the Editor-in-Chief and Managing Editor of the Environmental Monitoring and Assessment journal as well as to the two anonymous reviewers for their insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Rahdari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharazmi, R., Tavili, A., Rahdari, M.R. et al. Monitoring and assessment of seasonal land cover changes using remote sensing: a 30-year (1987–2016) case study of Hamoun Wetland, Iran. Environ Monit Assess 190, 356 (2018). https://doi.org/10.1007/s10661-018-6726-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6726-z

Keywords

Navigation