Skip to main content

Advertisement

Log in

Determining representative ranges of point sensors in distributed networks

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Distributed networks of stationary instruments provide high temporal scope (i.e., range/resolution) observations but are spatially limited as a set of point measurements. Measurement similarity between points typically decays with distance, which is used to set interpolation distances. The importance of analyzing spatiotemporal data at equivalent spatial and temporal scales has been identified but no standard procedure is used to interpolate space using temporally-indexed observations. Using concurrent mobile and stationary active acoustic, fish density data from a tidal energy site in Puget Sound, WA, USA, six methods are compared to estimate the range at which stationary measurements can be spatially interpolated. Four methods estimate the representative range of the mean using autocorrelation or paired t-test and repeated measures ANOVA. Accuracy of resulting sensor density estimates was modeled as departures from interpolated linear and aerial estimates. Two methods were used to estimate representative range of the variance by comparing theoretical spectra or by determining equivalent spatial and temporal scales. Representative ranges of means extended from 30.57 to 403.9 m. Estimation error (i.e., standard deviation) ranges of linearly interpolated or aerially extrapolated values ranged from 42.5 to 82.3%. Representative ranges using variance measurements differed by a factor of approximately two (scale equivalence = 648.7 m, theoretical = 1388.1 m). A six-step decision tree is presented to guide identification of monitoring variables and choice of method to calculate representative ranges in distributed networks. This approach is applicable for networks of any size, in aquatic or terrestrial environments, and monitoring the mean or variance of any quantity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anttila, S., Kairesalo, T., & Pellikka, P. (2008). A feasible method to assess inaccuracy caused by patchiness in water quality monitoring. Environmental Monitoring Assessment, 142(1), 11–22.

    Article  CAS  Google Scholar 

  • Bence, J. R. (1995). Analysis of short time series: correcting for autocorrelation. Ecology, 76(2), 628–639.

    Article  Google Scholar 

  • Brooks, C. F. (1947). Recommended climatological networks based on the representativeness of climatic stations for different elements. Transactions of the American Geophysical Union, 28(6), 845–846.

    Article  Google Scholar 

  • Burgos, J. M., & Horne, J. K. (2007). Sensitivity analysis and parameter selection for detecting aggregations in acoustic data. ICES Journal of Marine Science, 64(1), 160–168.

    Google Scholar 

  • Certain, G., Bellier, E., Planque, B., & Bretagnolle, V. (2007). Characterizing the temporal variability of the spatial distribution of animals: an application to seabirds at sea. Ecography, 30(5), 695–708.

    Article  Google Scholar 

  • Ciach, G. J., & Krajewski, W. F. (2006). Analysis and modeling of spatial correlation structure in small-scale rainfall in central Oklahoma. Advances in Water Resources, 29(10), 1450–1463.

    Article  Google Scholar 

  • Ciannelli, L., Fauchald, P., Chan, K. S., Agostini, V. N., & Dingsør, G. E. (2008). Spatial fisheries ecology: recent progress and future prospects. Journal of Marine Systems, 71(3–4), 223–236.

    Article  Google Scholar 

  • Damian, D., Sampson, P. D., & Guttorp, P. (2003). Variance modeling for nonstationary spatial processes with temporal replications. Journal of Geophysical Research – Atmospheres, 108(D24), 8778.

    Article  Google Scholar 

  • Ellis, J. I., & Schneider, D. C. (1997). Evaluation of a gradient sampling design for environmental impact assessment. Environmental Monitoring and Assessment, 48(2), 157–172.

    Article  CAS  Google Scholar 

  • FERC (Federal Energy Regulatory Commission). (2012). Order issuing pilot project license: Verdant Power, LLC. Project No. 12611-005.

  • Foote, K.G., Knudsen, H.P., Vestnes, G., MacLennan, D.N., Simmonds, E.J. (1987). Calibration of acoustic instruments for fish density estimation: a practical guide. ICES Cooperative Research Report No. 144.

  • Gandin, L.S. (1970). The planning of meteorological station networks. World Meteorological Organization Technical Note No. 111, Geneva.

  • Garcillán, P. P., & Ezcurra, E. (2003). Biogeographic regions and ß-diversity of woody dryland legumes in the Baja California peninsula. Journal of Vegetation Science, 14(6), 859–868.

    Article  Google Scholar 

  • Gilman, D. L., Fuglister, F. J., & Mitchell Jr., J. M. (1962). On the power spectrum of “red noise”. Journal of Atmospheric Science, 20(2), 182–184.

    Article  Google Scholar 

  • Godø, O. R., Handegard, N. O., Browman, H. I., Macaulay, G. J., Kaartvedt, S., & Giske, J., et al. (2014). Marine ecosystem acoustics (MEA): quantifying processes in the sea at the spatio-temporal scales on which they occur. ICES Journal of Marine Science, 71(8), 2357–2369.

  • Gray, J. S., McIntyre, A. D., Stim, J. (1992). Biological assessment of marine pollution—with particular reference to benthos. FAO Technical Paper No. 324: Manual of Methods in Aquatic Environment Research. Rome.

  • Green, R. H. (1979). Sampling design and statistical methods for environmental biologists. Chichester: Wiley.

    Google Scholar 

  • Hershfield, D. M. (1965). On the spacing of rain gauges. Symposium Design of Hydrological Networks no. 67 of I.A.S.H.

  • Hocke, K., & Kämpfer, N. (2011). Hovmöller diagrams of climate anomalies in NCEP/NCAR reanalysis from 1948 to 2009. Climate Dynamics, 36(1–2), 355–364.

    Article  Google Scholar 

  • Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton: Princeton University Press.

    Google Scholar 

  • Hudgins, L., Friehe, C. A., & Mayer, M. E. (1993). Wavelet transforms and atmospheric turbulence. Physical Review Letters, 71(20), 3279–3282.

    Article  CAS  Google Scholar 

  • Huff, F. A., Neill, J. C. (1957). Rainfall relations on small areas in Illinois. Bulletin of Illinois State Water Service no. 44.

  • Hutchinson, P. (1969). Estimation of rainfall in sparsely gauged areas. Hydrological Sciences Journal, 14(1), 101–119.

    Google Scholar 

  • Hutchinson, P. (1970). A contribution to the problem of spacing raingauges in rugged terrain. Journal of Hydrology, 12(1), 1–14.

    Article  Google Scholar 

  • Jacobs, J. D. (1989). Spatial representativeness of climatic data from Baffin Island, NWT, with implications for muskoxen and caribou distribution. Arctic, 42(1), 50–56.

    Article  Google Scholar 

  • Janis, M., & Robeson, S. (2004). Determining the spatial representativeness of air-temperature records using variogram-nugget time series. Physical Geography, 25(6), 513–530.

    Article  Google Scholar 

  • Kagan, R. L. (1966). An evaluation of representativeness of precipitation data. Works of the Main Geophysical Observatory. USSR. Vol. 191.

  • Kagan, R. L. (1972). Precipitation – Statistical Principles. In WMO Publication No. 324, The Casebook on Hydrological Network Design Practice. World Meteorological Organization, Geneva.

  • Kitsiou, D., Tsirtsis, G., & Karydis, M. (2001). Developing an optimal sampling design. A case study in a coastal marine ecosystem. Environmental Monitoring Assessment, 71(1), 1–12.

    Article  CAS  Google Scholar 

  • Legendre, P. (1993). Spatial autocorrelation: trouble or new paradigm? Ecology, 74(6), 1659–1673.

    Article  Google Scholar 

  • Liu, Y., San Liang, X., & Weisberg, R. H. (2007). Rectification of the bias in the wavelet power spectrum. Journal of Atmospheric and Oceanic Technology, 24(12), 2093–2102.

    Article  Google Scholar 

  • MacLennan, D. N., Fernandes, P. G., & Dalen, J. (2002). A consistent approach to definitions and symbols in fisheries acoustics. ICES Journal of Marine Science, 59(2), 365–369.

    Article  Google Scholar 

  • Martin, A. P., Zubkov, M. V., Burkill, P. H., & Holland, R. J. (2005). Extreme spatial variability in marine picoplankton and its consequences for interpreting Eulerian time-series. Biology Letters, 1(3), 366–369.

    Article  Google Scholar 

  • Milewska, E., & Hogg, W. D. (2001). Spatial representativeness of a long-term climate network in Canada. Atmosphere-Ocean, 39(2), 145–161.

    Article  Google Scholar 

  • Mønness, E., & Coleman, S. (2011). A short note on variograms and correlograms. Notat nr. 1-2011. Hedmark University College.

  • Nekola, J. C., & White, P. S. (1999). The distance decay in biogeography and ecology. Journal of Biogeography, 26(4), 867–878.

    Article  Google Scholar 

  • NYSERDA (New York State Energy Research and Development Authority). (2011). Roosevelt Island Tidal Energy (RITE) Environmental Assessment Project. NYSERDA 9892-1. Albany, New York.

  • Percival, D. P. (1995). On estimation of the wavelet variance. Biometrika, 82(3), 619–631.

    Article  Google Scholar 

  • Perrier, V., Philipovitch, T., & Basdevant, C. (1995). Wavelet spectra compared to Fourier spectra. Journal of Mathematical Physics, 36(3), 1506–1519.

    Article  Google Scholar 

  • Platt, T., & Denman, K. L. (1975). Spectral analysis in ecology. Annual Review of Ecology and Systematics, 6, 189–210.

    Article  Google Scholar 

  • Porter, J., Arzberger, P., Braun, H.-W., Bryant, P., Gage, S., Hansen, T., et al. (2005). Wireless sensor networks for ecology. Bioscience, 55(7), 561–572.

    Article  Google Scholar 

  • Posadas, P., Crisci, J. V., & Katinas, L. (2006). Historical biogeography: a review of its basic concepts and critical issues. Journal of Arid Environments, 66(3), 389–403.

    Article  Google Scholar 

  • Verdant Power. (2010a). Roosevelt Island Tidal Energy Project (FERC No. 12611): Final Kinetic Hydrokinetic Pilot License Application, Volume 4, Part 1 of 3. Verdant Power, LLC, New York.

  • Verdant Power. (2010b). Roosevelt Island Tidal Energy Project (FERC No. 12611): Final Kinetic Hydropower Pilot License Application, Volume 2, Part 2 of 2. Verdant Power, LLC, New York.

  • Rhodes, J. R., & Jonzén, N. (2011). Monitoring temporal trends in spatially structured populations: how should sampling effort be allocated between space and time? Ecography, 34(6), 1040–1048.

    Article  Google Scholar 

  • Roughgarden, J. (1977). Patchiness in the spatial distribution of a population caused by stochastic fluctuations in resources. Oikos, 29(1), 52–59.

    Article  Google Scholar 

  • Rycroft, H. B. (1949). Random sampling of rainfall. Journal of the South African Forestry Association, 18(1), 71–81.

    Article  Google Scholar 

  • Sampson, P., Damian, D., Guttorp, P. (2001). Advances in modelling and inference for environmental processes with nonstationary spatial covariance. In Allard, D., Monestiez, P., Froidevaux, R. (eds), GeoENV2000: Third European Conference on Geostatistics for Environmental Applications.

  • Schindler, D. E., Hilborn, R., Chasco, B., Boatright, C. P., Quinn, T. P., Rogers, L. A., et al. (2010). Population diversity and the portfolio effect in an exploited species. Nature, 465(7298), 609–612.

    Article  CAS  Google Scholar 

  • Schneider, D. C. (1990). Spatial autocorrelation in marine birds. Polar Research, 8(1), 89–97.

    Article  Google Scholar 

  • Siljamo, P., Sofiev, M., Ranta, H., Linkosalo, T., Kubin, E., Ahas, R., et al. (2008). Representativeness of point-wise phenological Betula data collected in different parts of Europe. Global Ecology and Biogeography, 17(4), 489–502.

  • Skalski, J. R., & McKenzie, D. H. (1982). A design for aquatic monitoring programs. Journal of Environmental Management, 14(3), 237–251.

    Google Scholar 

  • Soininen, J., McDonald, R., & Hillebrand, H. (2007). The distance decay of similarity in ecological communities. Ecography, 30(1), 3–12.

    Article  Google Scholar 

  • Steele, J. H., Henderson, E. W., Mangel, M., & Clark, C. (1994). Coupling between physical and biological scales. Philosophical Transactions of the Royal Society London B, 343(1303), 5–9.

    Article  Google Scholar 

  • Sulkava, M., Luyssaert, S., Zaehle, S., & Papale, D. (2011). Assessing and improving the representativeness of monitoring networks: the European flux tower network example. Journal of Geophysical Research, 116(G3), G00J04.

    Google Scholar 

  • Sullivan, L. M. (2006). Estimation from samples. Circulation, 114(5), 445–449.

    Article  Google Scholar 

  • Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61–78.

    Article  Google Scholar 

  • Tversky, A., & Kahneman, D. (1975). Judgement under uncertainty: heuristics and biases. In D. Wendt & C. Vlek (Eds.), Utility, probability, and human decision making (pp. 141–162). Reidel: Boston.

    Chapter  Google Scholar 

  • Underwood, A. J. (1991). Beyond BACI: experimental designs for detecting human environmental impacts on temporal variations in natural populations. Marine and Freshwater Research, 42(5), 569–587.

    Article  Google Scholar 

  • Underwood, A. J. (1994). On beyond BACI: sampling designs that might reliably detect environmental disturbances. Ecological Applications, 4(1), 4–15.

    Article  Google Scholar 

  • Underwood, A. J. (1997). Environmental decision-making and the precautionary principle: what does this principle mean in environmental sampling practice? Landscape and Urban Planning, 37(3–4), 137–146.

    Article  Google Scholar 

  • Underwood, A. J., & Chapman, M. G. (2003). Power, precaution, type II error and sampling design in assessment of environmental impacts. Journal of Experimental Marine Biology and Ecology, 296(1), 49–70.

    Article  Google Scholar 

  • Urmy, S. S., Horne, J. K., & Barbee, D. H. (2012). Measuring the vertical distributional variability of pelagic fauna in Monterey Bay. ICES Journal of Marine Science, 69(2), 184–196.

    Article  Google Scholar 

  • Wiens, J. A. (1976). Population responses to patchy environments. Annual Review of Ecology and Systematics, 7, 81–120.

    Article  Google Scholar 

  • Wiens, J. A. (1989). Spatial scaling in ecology. Functional Ecology, 3(4), 385–397.

    Article  Google Scholar 

  • Wu, J. (1999). Hierarchy and scaling: extrapolating information along a scaling ladder. Canadian Journal of Remote Sensing, 25(4), 367–380.

    Article  Google Scholar 

  • Zar, J. H. (2010). Biostatistical analysis (5th ed.). Pearson: Upper Saddle River, New Jersey.

    Google Scholar 

Download references

Acknowledgements

This study was made possible by the US National Oceanographic Partnership Program, the Bureau of Ocean Energy Management (M10PC00093), and the National Science Foundations’ Sustainable Energy Pathways Program (CHE-1230426). Pierre Petigas suggested the rain gauge analogy. Three anonymous reviewers are thanked for comments that increased clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K. Horne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horne, J.K., Jacques, D.A. Determining representative ranges of point sensors in distributed networks. Environ Monit Assess 190, 348 (2018). https://doi.org/10.1007/s10661-018-6689-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6689-0

Keywords