Skip to main content

Advertisement

Log in

Bioaccumulation of nickel in tomato plants: risks to human health and agro-environmental impacts

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Anthropogenic activities such as agriculture, industry, and mining have contributed significantly to the accumulation of heavy metals in the soil, which in turn cause problems to human health and to the environment. The present work aims to study the effects of nickel (Ni) on the development of tomato plants, the risks to human health associated to the consumption of contaminated tomatoes, and the consequences to the environment. The experiment was carried out in greenhouse environment for a period of 120 days, and the plants were cultivated in soils with four different concentrations of Ni: 0, 35, 70, and 105 mg kg−1. The concentration of nickel in each part (root, stem, leaf, and fruit) of the tomato plant was measured at four different stages of the cycle: 30, 60, 90, and 120 days, by inductively coupled plasma optical emission spectrometer (ICP-OES). At the end of the cycle, the concentration of certain macro- and micronutrients was also determined and related to the corresponding Ni concentration in the soil. The distribution of Ni in the parts of the plant was analyzed from the bioaccumulation factor temporal behavior. Nickel concentrations found in the fruit were too low to pose a risk to human health. As a result of this research, it was verified that soils with nickel concentrations close to 70 mg kg−1, which is the limit established by the CONAMA resolution (420/2009), may actually represent an optimum concentration value for the development of tomato plants. It also increases productivity per plant and reduces the use of resources such as water and agricultural inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alghobar, M. A., & Suresha, S. (2017). Evaluation of metal accumulation in soil and tomatoes irrigated with sewage water from Mysore city, Karnataka, India. Journal of the Saudi Society of Agricultural Sciences, 16, 49–59.

    Article  Google Scholar 

  • Alleoni, L. R. F., Borba, R. P., & Camargo, O. A. (2005). Heavy metals: from cosmogony to Brazilian soils. Topics in soilscience. Viçosa: Sociedade Brasileira de Ciência do Solo, 4, 1–42.

    Google Scholar 

  • Al-Qurainy, F. (2009). Toxicity of heavy metals and their molecular detection on Phaseolus vulgaris (L.). Australian Journal of Basic and Applied Sciences, 3, 3025–3035.

    CAS  Google Scholar 

  • Alves, L. Q., de Jesus, R. M., de Almeida, A. F., Souza, V. L., & Mangabeira, P. A. O. (2014). Effects of lead on anatomy, ultrastructure and concentration of nutrients in plants Oxycaryum cubense (Poep. & Kunth) Palla: a species with phytoremediator potential in contaminated watersheds. Environmental Science and Pollution Research, 21, 6558–6570.

    Article  CAS  Google Scholar 

  • Amari, T., Ghnaya, T., Debez, A., Taamali, M., Youssef, N. B., Lucchini, G., Sacchi, G. A., & Abdelly, C. (2014). Comparative Ni tolerance and accumulation potentials between Mesembryanthemum crystallinum (halophyte) and Brassica juncea: metal accumulation, nutrient status and photosynthetic activity. Journal of Plant Physiology, 171, 1634–1644.

    Article  CAS  Google Scholar 

  • Bai, C., Liu, L., & Wood, B. W. (2013). Nickel affects xylem sap RNase A and converts RNase A to a urease. BMC Plant Biology, 13, 207.

    Article  CAS  Google Scholar 

  • Baptista, J. M., Almeida, M. D. C., Vieira, P., Silva, A. C. M., Ribeiro, R., Fernando, R. M., Serafim, A., Alves, I., & Cameira, M. D. R. (2001). Programa nacional para o uso eficiente da água (p. 212). Lisboa: Instituto Superior de Agronomia.

    Google Scholar 

  • Bertoli, A. C., Carvalho, R., Cannata, M. G., Bastos, A. R., & Augusto, A. S. (2011). Toxidez do chumbo no teor e translocação de nutrientes em tomateiro. Biotemas, 24, 7–15.

    Article  Google Scholar 

  • Berton, R. S., Pires, A. M. M., Andrade, S. A. L. D., Abreu, C. A. D., Ambrosano, E. J., & Silveira, A. P. D. D. (2006). Nickel toxicity in common bean plants and effects on soil microbiota. Pesquisa Agropecuária Brasileira, 41, 1305–1312.

    Article  Google Scholar 

  • Bradstreet, R. B. (1940). A review of the Kjeldahl determination of organic nitrogen. Chemical Reviews, 27, 331–350.

    Article  CAS  Google Scholar 

  • Brazilian Institute of Geographic and Statistics (IBGE). (2011). Pesquisa de Orçamentos Familiares 2008–2009: Análise do consume alimentar pessoal no Brasil. Rio de Janeiro: IBGE.

    Google Scholar 

  • Brune, A., & Dietz, K. J. (1995). A comparative analysis of element composition of roots and leaves of barley seedlings grown in the presence of toxic cadmium, molybdenum, nickel, and zinc concentrations. Journal of Plant Nutrition, 18, 853–868.

    Article  CAS  Google Scholar 

  • Castro Lima, E. D., Alves de Alvarenga, A., Mauro de Castro, E. M. D., Vieira, C. V., & Morbeck de Oliveira, H. (2005). Trocas gasosas, características das folhas e crescimento de plantas jovens de Cupaniavernalis Camb. submetidas a diferentes níveis de sombreamento. Ciencia Rural, 35, 1092–1097.

    Article  Google Scholar 

  • CONAMA, N. 420/2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto a presença de substâncias químicas. http://www.mma.gov.br/port/conama/res/res09/res42009.pdf(last accessed February 2017).

  • Correia, L. O., Brizi, J. N., Marrocos, P. C. L., Velasco, F. G., Luzardo, F. M., Olivares, D. M., Nadine, O. A., & Santos, H. M. (2016). Bioacumulação de chumbo em plantas de cenoura (Daucus carota) e seus efeitos na saúde humana. Gaia Scientia, 10, 301–318.

    Article  Google Scholar 

  • Da Silva, J.C., Giordano, L.B., Furumoto, O.,Boiteux, L.S., França, F.H., Bôas, G.L.V., Branco, M.C., De Medeiros, M.A., Marouelli, W., Silva, W.L.C., Lopes, C.A., Ávila, A.C., Nascimento, W.M., Pereira, W., 2006. Cultivo do tomate para industrialização. Revista Eletrônica Embrapa Hortaliças.http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Tomate/TomateIndustrial_2ed/irrigacao.htm (lastaccessedFebruary 2016).

  • Dai, R., Shoemaker, R., Farrens, D., Han, M. J., Kim, C. S., & Song, P. S. (1992). Characterization of silkworm chlorophyll metabolites as an active photosensitizer for photodynamic therapy. Journal of Natural Products, 55, 1241–1251.

    Article  CAS  Google Scholar 

  • Emamverdian, A., Ding, Y., Mokhberdoran, F., & Xie, Y. (2015). Heavy metals stress and some mechanisms of plant defense response. The Scientific World Journal, 2015, 1–18.

    Article  CAS  Google Scholar 

  • Fabiano, C., Tezotto, T., Favarin, J. L., Polacco, J. C., & Mazzafera, P. (2015). Essentiality of nickel in plants: a role in plant stresses. Frontiers in Plant Science, 6, 754.

  • Farid, G., Sarwar, N., Saifullah, Ahmad, A., & Ghafoor, A. (2015). Heavy metals (Cd, Ni and Pb) contamination of soils, plants and waters in Madina Town of Faisalabad Metropolitan and preparation of GIS based maps. Advances in Crop Science and Technology, 4, 199.

    Article  CAS  Google Scholar 

  • Fayiga, A. O., & Ma, L. Q. (2006). Using phosphate rock to immobilize metals in soils and increase arsenic uptake in Pterisvittata. Science of the Total Environment, 359, 17–25.

    Article  CAS  Google Scholar 

  • Filgueira, F. A. R., Obeid, P. C., Morais, H. J. D., Santos, W. V. D., & Fontes, R. R. (1999). Tomate tutorado. In A. C. Ribeiro (Ed.), Recomendações para uso de corretivos e fertilizantes em Minas Gerais: 5 Aproximação (pp. 207–208). Viçosa: Comissão de Fertilidade do Solo do Estado de Minas Gerais-CFSEMG.

    Google Scholar 

  • Gad, N., El-Sherif, M. H., & El-Gereedly, N. H. M. (2007). Influence of nickel on some physiological aspects of tomato plants. Australian Journal of Basic and Applied Sciences, 1, 286–293.

    CAS  Google Scholar 

  • Gillette, B. (2008). Nickel named «Allergen of the Year». ACDS adds to list of substances warranting more attention. Dermatology Times, 4, 15–16.

    Google Scholar 

  • Hauser, M. T. (2014). Molecular basis of natural variation and environmental control of trichome patterning. Frontiers in Plant Science, 5, 320.

  • Hernández-Suárez, M., Rodríguez-Rodríguez, E. M., & Díaz-Romero, C. (2007). Mineral and trace element concentrations in cultivars of tomatoes. Food Chemistry, 104, 489–499.

    Article  CAS  Google Scholar 

  • Hossain, M. A., Piyatida, P., da Silva, J. A. T., & Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 2012, 1–37.

    Article  CAS  Google Scholar 

  • Hue, N. V., Silva, J. A., Uehara, G., Hamasaki, R. T., Uchida, R., & Bunn, P. (1998). Managing manganese toxicity in former sugarcane soils on Oahu. Soil and Crop Management SCM-1. Honolulu: Tropical Agric. Humam Res., Univ. Hawaii.

    Google Scholar 

  • Jasmim, J. M., Monnerat, P. H., & Rosa, R. C. C. (2002). Efeito da omissão de N, Ni, Co e S sobre os teores de N e S em feijoeiro. Revista Brasileira de Ciência do Solo, 26, 967–975.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2010). Trace elements in soils and plants (3rd ed.). Florida: CRC Press Inc..

    Book  Google Scholar 

  • Karagiannidis, N., Stavropoulos, N., & Tsakelidou, K. (2002). Yield increase in tomato, eggplant and pepper using nickel in soil. Communications in Soil Science and Plant Analysis, 33, 2274–2285.

    Article  Google Scholar 

  • Kasa, E., Contin, M., & Gjoka, F. (2015). Accumulation of heavy metals in vegetables from agricultural soils. Albanian Journal of Agricultural Science, 14, 169–175.

    CAS  Google Scholar 

  • Khan, M. R., & Khan, M. M. (2010). Effect of varying concentration of nickel and cobalt on the plant growth and yield of chickpea. Australian Journal of Basic and Applied Sciences, 4, 1036–1046.

    CAS  Google Scholar 

  • Klucas, R. V., Hanus, F. J., Russell, S. A., & Evans, H. J. (1983). Nickel: a micronutrient element for hydrogen-dependent growth of Rhizobium japonicum and for expression of urease activity in soybean leaves. Proceedings of the National Academy of Sciences, 80, 2253–2257.

    Article  CAS  Google Scholar 

  • Lima, F. d. S., Araújo do Nascimento, C. W., de Aguiar Accioly, A. M., de Silva Sousa, C., & Ferreira da Cunha Filho, F. (2013). Bioconcentração de chumbo e micronutrientes em hortaliças cultivadas em solo contaminado. Revista Ciência Agronômica, 44, 234–241.

    Article  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). Amsterdam: Elsevier Ltd..

    Google Scholar 

  • Messinger, S. M., Buckley, T. N., & Mott, K. A. (2006). Evidence for involvement of photosynthetic processes in the stomatal response to CO2. Plant Physiology, 140, 771–778.

    Article  CAS  Google Scholar 

  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8, 199–216.

    Article  CAS  Google Scholar 

  • Nuez, F. (1995). El cultivo del tomate. Madrid: Mundi-Prensa.

    Google Scholar 

  • Ozores-Hampton, M., Hanlon, E., Bryan, H., & Schaffer, B. (1997). Cadmium, copper, lead, zinc and nickel concentration in tomato and squash growth in MSW compost-amended calcareous soil. Compost Science & Utilization, 5, 40–45.

    Article  Google Scholar 

  • Page, V., & Feller, U. R. S. (2005). Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat. Annals of Botany, 96, 425–434.

    Article  CAS  Google Scholar 

  • Paiva, H. N. D., Carvalho, J. G. D., & Siqueira, J. O. (2002). Índice de translocação de nutrientes em mudas de cedro (CedrelafissilisVell.) e de ipê-roxo (tabebuia impetiginosa (mart.) standl.) submetidas a doses crescentes de cádmio, níquel e chumbo. Revista Árvore, 26, 467–473.

    Article  Google Scholar 

  • Palacios, G., Gomez, I., Carbonell-Barrachina, A., Pedreño, J. N., & Mataix, J. (1998). Effect of nickel concentration on tomato plant nutrition and dry matter yield. Journal of Plant Nutrition, 21, 2179–2191.

    Article  CAS  Google Scholar 

  • Radin, B. (2002). Eficiência de uso da radiação fotossinteticamente ativa pelo tomateiro cultivado em diferentes ambientes. Porto Alegre: Universidade Federal do Rio Grande do Sul-UFRGS.

    Google Scholar 

  • Rocha, A. D. S., & Moraes, J. A. P. V. (1997). Influência do estresse hídrico sobre as trocas gasosas em plantas jovens envasadas de Stryphnodendronadstringens (Mart.) Coville. Revista Brasileira de Fisiologia Vegetal, 9, 43–48.

    Google Scholar 

  • Roveda, L. F., Cuquel, F. L., Motta, A. C. V., & Melo, V. F. (2016). Organic compounds with high Ni content: effects on soil and strawberry production. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, 722–727.

    Article  Google Scholar 

  • Salem, N. M., Albanna, L. S., & Awaad, A. M. (2006). Toxic heavy metals accumulation in tomato plant (Solanum lycopersicum). ARPN Journal of Agricultural and Biological Sciences, 11, 399–404.

    Google Scholar 

  • Silva, F. D. (1999). Manual de análises químicas de solo. Plantas e Fertilizantes (1st ed.). Brasília: EMBRAPA.

    Google Scholar 

  • Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: an overview. The Indian Journal of Pharmacy, 43, 246–253.

    Article  CAS  Google Scholar 

  • Snow, E. T. (1992). Metal carcinogenesis: mechanistic implications. Pharmacology & Therapeutics, 53, 31–65.

    Article  CAS  Google Scholar 

  • Sreekanth, T. V. M., Nagajyothi, P. C., Lee, K. D., & Prasad, T. N. V. K. V. (2013). Occurrence, physiological responses and toxicity of nickel in plants. International journal of Environmental Science and Technology, 10, 1129–1140.

    Article  CAS  Google Scholar 

  • Tedesco, J. M., Gianello, C., Bissani, A. C., Bohnen, H., & Volkweiss, S. J. (1995). Análise de solo, plantas e outros materiais (2nd ed.). Porto Alegre: Universidade Federal do Rio Grande do Sul-UFRGS.

    Google Scholar 

  • Todorović, S., Giba, Z., Simonović, A., Božić, D., Banjanac, T., & Grubišić, D. (2009). Manganese effects on in vitro development of lesser centaury [Centauriumpulchellum(Sw.) Druce]. Archives of Biological Sciences, 61, 279–283.

    Article  Google Scholar 

  • Trebolazabala, J., Maguregui, M., Morillas, H., García-Fernández, Z., de Diego, A., & Mandariaga, J. M. (2017). Uptake of metals by tomato plants (Solanum lycopersicum) and distribution inside the plant: field experiments in Biscay (Basque Country). Journal of Food Composition and Analysis, 59, 161–169.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (U.S. EPA). (1989). Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part A). U.S.EPA/540/1-89/002. Washington DC: U.S. EPA.

    Google Scholar 

  • Wang, H. F., Takematsu, N., & Ambe, S. (2000). Effects of soil acidity on the uptake of trace elements in soybean and tomato plants. Applied Radiation and Isotopes, 52, 803–811.

    Article  CAS  Google Scholar 

  • Watanabe et al., 2005. Effect of nickel in hydroponic culture on growth and mineral content of tomato plants. Technical bulletin of Faculty of Horticulture, Chiba University, 55, 15–19.

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, 20.

    Article  Google Scholar 

  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368, 456–464.

    Article  CAS  Google Scholar 

  • Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of trace elements by wetland plants: I. Duckweed. Journal of Environmental Quality, 27, 715–721.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

L. Correia would like to thank Brazilian Agency of Coordination for the Improvement of Higher Education Personnel (CAPES - Portuguese: Coordenação de Aperfeiçõamento de Pessoal de Nível Superior) (for the doctorate scholarship. The authors also wish to thank the Funding Authority for Studies and Projects (FINEP - Portuguese: Financiadora de Estudos e Projetos) for the financial support to acquire the ICP spectrometer, and CEPEC/CEPLAC for the support in the greenhouse experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Montalván Olivares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correia, L., Marrocos, P., Montalván Olivares, D.M. et al. Bioaccumulation of nickel in tomato plants: risks to human health and agro-environmental impacts. Environ Monit Assess 190, 317 (2018). https://doi.org/10.1007/s10661-018-6658-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6658-7

Keywords

Navigation