Skip to main content

Advertisement

Log in

Agriculture and elevation are the main factors for Pampasic stream habitat and water quality

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Streams of the Pampasic plain in Southeastern South America are ecosystems affected by both water pollution and habitat alteration mainly due to agricultural activity. Water quality is influenced by the quality of habitats and both depend on land use and watershed morphology. The objective of this study was to determine the relationship between the variables of four factors: (1) the morphology of the watershed, (2) land use in the watershed, (3) river habitat, and (4) water quality of wadeable streams in Uruguay, as well as to determine the most representative variables to quantify such factors. We studied 28 watersheds grouped into three ecoregions and four principal activities, which generated seven zones with three to five streams each. Correlations between the variables of each factor allowed reducing the total number of variables from 57 to 32 to perform principal component analyses (PCA) by factor, reducing the number of variables to 18 for a general PCA. The first component was associated with water quality and elevation. The second was associated with the stream and watershed size, the third with habitat quality, and the fourth to the use of neighboring soils and objects in the channel. Our results indicate that agricultural intensity and elevation are the main factors associated with the habitat and water quality of these lowland streams. These factors must be especially considered in the development of water quality monitoring programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amuchástegui, G., di Franco, L., & Feijoo, C. (2016). Catchment morphometric characteristics, land use and water chemistry in Pampean streams: a regional approach. Hydrobiologia, 767, 65–79.

    Article  Google Scholar 

  • APHA. (1995). Standard methods for the examination of water and wastewater. Washington: APHA/AWWA/WPCF.

    Google Scholar 

  • Arocena Real de Azúa, R., González Bermúdez, C., & Chalar Marquisá, G. (2016). La autodepuración en arroyos de planicie puede interrumpirse por el ingreso de desechos vitivinícolas según el biomonitoreo con macroinvertebrados. Hidrobiológica, 26, 383–394.

    Google Scholar 

  • Arocena, R., Chalar G., Fabián D., de León L., Brugnoli E., Silva M., Rodó E., Machado I., Pacheco J. P., Castiglioni R., Gabito, L. (2008). Evaluación ecológica de cursos de agua y biomonitoreo. Final Report. DINAMA - Facultad de Ciencias. http://limno.fcien.edu.uy/. Accessed 12 Aug 2017.

  • Bailey, D., Billeter, R., Aviron, S., Schweiger, O., & Herzog, F. (2007). The influence of thematic resolution on metric selection for biodiversity monitoring in agricultural landscapes. Landscape Ecology, 22, 461–473.

    Article  Google Scholar 

  • Baldi, G., & Paruelo, J. M. (2008). Land-use and land cover dynamics in South American Temperate Grasslands.

  • Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid Bioassessment Protocols for use in Streams and Wadeable Rivers, Periphyton, Benthic Macroinvertebrates, and Fish (2nd ed.). Washington, D.C.: EPA 841-B-99-002. U.S. Environmental. Protection Agency; Office of Water.

    Google Scholar 

  • Bartesaghi, L., & Achkar, M. (2008). Land use interpretation of Uruguay from satellite images CBERS 2. Montevideo: Technical Report. PDT Project 32–26.

  • Bartesaghi, L., Ceroni, M., Díaz, I., Faccio, C., Lenormand, P. (2006). Estrategias para la Gestión Participativa en Cuencas Hidrográficas: Experiencia Piloto en la Cuenca del Río Santa Lucía Chico en el Departamento de Florida-Uruguay. Montevideo: Programa Uruguay Sustentable. REDES – AMIGOS DE LA TIERRA URUGUAY. Laboratorio de Desarrollo Sustentable y Gestión Ambiental del Territorio. Facultad de Ciencias.

  • Beckert, K. A., Fisher, T. R., O’Neil, J. M., & Jesien, R. V. (2011). Characterization and comparison of stream nutrients, land use, and loading patterns in Maryland coastal bay watersheds. Water, Air, and Soil Pollution, 221, 255–273.

    Article  CAS  Google Scholar 

  • Bossi, J., Ferrando, L., Montaña, J., Campal, N., Morales, H., Gancio, F., Schipilov, A., Piñeyro, D., & Sprechmann, P. (1998). Carta Geológica del Uruguay., escala 1/500.000 versión 1.0. Montevideo: Facultad de Agronomía - Geoeditores SRL.

    Google Scholar 

  • Buffagni, A., Casalegno, C., & Erba, S. (2009). Hydromorphology and land use at different spatial scales: expectations in a changing climate scenario for medium-sized rivers of the Western Italian Alps. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 174, 7–25.

    Article  Google Scholar 

  • Chalar, G., Arocena, R., Fabián, D., & Pacheco, J. P. (2011). Trophic assessment of streams in Uruguay: A trophic state index for benthic invertebrates (TSI). Ecological Indicators, 11, 362–369.

    Article  CAS  Google Scholar 

  • Chalar, G., Delbene, L., González-Bergonzoni, I., & Arocena, R. (2013). Fish assemblage changes along a trophic gradient induced by agricultural activities (Santa Lucía, Uruguay). Ecological Indicators, 24, 582–588.

    Article  Google Scholar 

  • Chalar, G., Garcia-Pesenti, P., Silva-Pablo, M., Perdomo, C., Olivero, V., & Arocena, R. (2017). Weighting the impacts to stream water quality in small basins devoted to forage crops, dairy and beef cow production. Limnologica, 65, 76–84.

    Article  CAS  Google Scholar 

  • Chapman, D. (1996). Water quality assessments. UNESCO-WHO-UNEP: London 626 p.

    Book  Google Scholar 

  • Cochero, J., Cortelezzi, A., Tarda, A. S., & Gómez, N. (2016). An index to evaluate the fluvial habitat degradation in lowland urban streams. Ecological Indicators, 71, 134–144.

    Article  CAS  Google Scholar 

  • Conde, D., Gorga J., Chalar G. (1999). Cap. 11. Nitrógeno, fósforo y sílice. In. Arocena R, Conde D. (Eds.) Métodos en Ecología de Aguas Continentales (pp. 82–96). Montevideo: Facultad de Ciencias, Universidad de la República

  • Connolly, N. M., Pearson, R. G., Loong, D., Maughanb, M., & Brodie, J. (2015). Water quality variation along streams with similar agricultural development but contrasting riparian vegetation. Agriculture, Ecosystems and Environment, 213, 11–20.

    Article  Google Scholar 

  • Conroy, E., Turner, J. N., Rymszewicz, A., O’Sullivan, J. J., Bruen, M., Lawler, D., Lally, H., & Kelly-Quinn, M. (2016). The impact of cattle access on ecological water quality in streams: examples from agricultural catchments within Ireland. Science of the Total Environment, 547, 17–29.

    Article  CAS  Google Scholar 

  • Dauwalter, D. C., Splinter, D. K., Fisher, W. L., & Marston, R. A. (2007). Geomorphology and stream habitat relationships with smallmouth bass (Micropterus dolomieu) abundance at multiple spatial scales in eastern Oklahoma. Canadian Journal of Fisheries and Aquatic Sciences, 64, 1116–1129.

    Article  Google Scholar 

  • Elosegi, A., Diez, J., & Mutz, M. (2010). Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia, 657, 199–215.

  • Evans, D. M., Schoenholtz, S. H., Wigington, P. J., Griffith, S. M., & Floyd, W. C. (2014). Spatial and temporal patterns of dissolved nitrogen and phosphorus in surface waters of a multi-land use basin. Environmental Monitoring and Assessment, 186, 873–887.

    Article  CAS  Google Scholar 

  • Feijoó, C. S., & Lombardo, R. J. (2007). Baseline water quality and macrophyte assemblages in Pampean streams: a regional approach. Water Research, 41, 1399–1410.

    Article  Google Scholar 

  • Fernandes, J., & Tanaka, M. O. (2014). Can the structure of a riparian forest remnant influence stream water quality? A tropical case study. Hydrobiologia, 724, 175–185.

    Article  Google Scholar 

  • Ferreol, M., Dohet, A., Cauchie, H. M., & Hoffmann, L. (2005). A top-down approach for the development of a stream typology based on abiotic variables. Hydrobiologia, 551, 193–208.

    Article  Google Scholar 

  • Gabellone, N. A., Claps, M. C., Solari, L. C. & Neschuk, N. C. (2005). Nutrients, Conductivity and Plankton in a Landscape Approach to a Pampean Saline Lowland River (Salado River, Argentina). Biogeochemistry, 75, 455–477.

  • Giorgi, A. D. N., Feijoó, C., & Tell, G. (2005). Primary producers in a Pampean stream: temporal variation and structuring role. Biodiversity and Conservation, 14, 1699–1718.

    Article  Google Scholar 

  • Graf, W., Leitner, P., Hanetseder, I., Ittner, L. D., Dossi, F., & Hauer, C. (2016). Ecological degradation of a meandering river by local channelization effects: a case study in an Austrian lowland river. Hydrobiologia, 772, 145–160.

    Article  CAS  Google Scholar 

  • Gücker, B., Boëchat, I., & Giani, A. (2009). Impacts of agricultural land use on ecosystem structure and whole-stream metabolism of tropical Cerrado streams. Freshwater Biology, 54, 2069–2085.

    Article  Google Scholar 

  • Hart, M. R., Quin, B. F., & Nguyen, M. L. (2004). Phosphorus runoff from agricultural land and direct fertilizer effects: a review. Journal of Environmental Quality, 33, 1954–1972.

    Article  CAS  Google Scholar 

  • Herringshaw, C. J., Stewart, T. W., & Thom, J. R. (2011). Land use, stream habitat and benthic invertebrate. Assemblages in a highly altered Iowa watershed. The American Midland Naturalist, 165, 274–293.

    Article  Google Scholar 

  • Horton, R. E. (1945). Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Bulletin Geological Society of America, 56, 275–370.

    Article  Google Scholar 

  • Jackson, C. R., Bahn, R. A., & Webster, J. R. (2017). Water quality signals from rural land use and exurbanization in a mountain landscape: what’s clear and what’s confounded? Journal of the American Water Resources Association, 53, 1212–1228.

    Article  Google Scholar 

  • Kail, J., Jähnig, S. C., & Hering, D. (2009). Relation between floodplain land use and river hydromorphology on different spatial scales—a case study from two lower-mountain catchments in Germany. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 174, 63–73.

    Article  Google Scholar 

  • Kamp, U., Bock, R., & Holzl, K. (2004). Assessment of river habitat in Brandenburg, Germany. Limnologica, 34, 176–186.

    Article  Google Scholar 

  • Kasangaki, A., Chapman, L. J., & Balirwa, J. (2008). Land use and the ecology of benthic macroinvertebrate assemblages of high-altitude rainforest streams in Uganda. Freshwater Biology, 53, 681–697.

    Article  Google Scholar 

  • Kearns, F. R., Kelly, N. M., Carter, J. L., & Resh, V. H. (2005). A method for the use of landscape metrics in freshwater research and management. Landscape Ecology, 20, 113–125.

    Article  Google Scholar 

  • Lassaletta, L., García-Gómez, H., Gimeno, B. S., & Rovira, J. (2009). Agriculture-induced increase in nitrate concentrations in stream waters of a large Mediterranean catchment over 25 years (1981–2005). Science of the Total Environment., 407, 6034–6043.

    Article  CAS  Google Scholar 

  • Manfrin, A., Bombi, P., Traversetti, L., Larsene, S., & Scalici, M. (2016). A landscape-based predictive approach for running water quality assessment: a Mediterranean case study. Journal for Nature Conservation, 30, 27–31.

    Article  Google Scholar 

  • Meynendonckx, J., Heuvelmans, G., Muys, B., & Feyen, J. (2006). Effects of watershed and riparian zone characteristics on nutrient concentrations in the River Scheldt Basin. Hydrology and Earth System Sciences Discussions, 3, 653–679.

    Article  Google Scholar 

  • MGAP - Ministerio de Ganadería, Agricultura y Pesca. Dirección de Estadísticas Agropecuarias (MGAP, DIEA) (2000). Censo General Agropecuario. www.mgap.gub.uy.

  • MGAP - Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales Renovables (MGAP, DGRNR) (1994). Carta de Reconocimiento de los Suelos del Uruguay 1:1.000.000.

  • MGAP - Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales Renovables (MGAP, DGRNR) (2004). Carta de Macrozonificación de Ecosistemas del Uruguay

  • Molina, M. C., Roa-Fuentes, C. A., Zeni, J. O., & Casatti, L. (2017). The effects of land use at different spatial scales on instream features in agricultural streams. Limnologica, 65, 14–21.

    Article  CAS  Google Scholar 

  • Mugni, H. (2009). Concentración de nutrientes y toxicidad de pesticidas en aguas superficiales de cuencas rurales. Tesis doctoral: Universidad de La Plata 140 pp.

    Google Scholar 

  • Mugni, H., Paracampo, A., & Bonetto, C. (2013). Nutrient concentrations in a Pampasic first order stream with different land uses in the surrounding plots (Buenos Aires, Argentina). Bulletin of Environmental Contamination and Toxicology, 91(4), 391–395.

    Article  CAS  Google Scholar 

  • Ouyang, Y. (2005). Evaluation of river water quality monitoring stations by principal component analysis. Water Research, 39, 2621–2635.

    Article  CAS  Google Scholar 

  • Pedersen, M. L. (2009). Effects of channelisation, riparian structure and catchment area on physical habitats in small lowland streams. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 174, 89–99.

    Article  Google Scholar 

  • Petersen, R. C. (1992). The RCE: A riparian, channel, and environmental inventory for small streams in the agricultural landscape. Freshwater Biology, 27, 295–306.

    Article  Google Scholar 

  • Peterson, E. W., & Benning, C. (2013). Factors influencing nitrate within a low-gradient agricultural stream. Environment and Earth Science, 68, 1233–1245.

    Article  CAS  Google Scholar 

  • Poquet, J. M., Alba-Tercedor, J., Punt, T., Sánchez-Montoya, M., Robles, S., Alvarez, M., Zamora-Muñoz, C., Sainz-Cantero, C. E., Vidal-Abarca, M. R., Suarez, M. L., Toro, M., Pujante, A. M., Rieradevall, M., & Prat, N. (2009). The MEDiterranean Prediction And Classification System (MEDPACS): an implementation of the RIVPACS/ AUSRIVAS predictive approach for assessing Mediterranean aquatic macroinvertebrate communities. Hydrobiologia, 623, 153–171.

    Article  Google Scholar 

  • Ranganath, S. C., Hession, W. C., & Wynn, T. M. (2009). Livestock exclusion influences on riparian vegetation, channel morphology, and benthic macroinvertebrate assemblages. Journal of Soil and Water Conservation, 64, 33–42.

    Article  Google Scholar 

  • Rinaldi, M., Suria, N., Comiti, F., & Bussettini, M. (2013). A method for the assessment and analysis of the hydromorphological condition of Italian streams: The Morphological Quality Index (MQI). Geomorphology, 180–181, 96–108.

    Article  Google Scholar 

  • Rodrigues Capítulo, A., Gómez, N., Giorgi, A., & Feijoó, C. (2010). Global changes in pampean lowland streams (Argentina): implications for biodiversity and functioning. Hydrobiologia, 657, 53–70.

    Article  Google Scholar 

  • Rosso, J. J., & Fernandez Cirelli, A. (2013). Effects of land use on environmental conditions and macrophytes in prairie lotic ecosystems. Limnologica, 43, 18–26.

    Article  CAS  Google Scholar 

  • Roth, N. E., Allan, J. D., & Erickson, D. L. (1996). Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology, 11, 141–156.

    Article  Google Scholar 

  • Sánchez-Montoya, M. M., Puntí, T., Suárez, M. L., Vidal-Abarca, M. R., Rieradevall, M., Poquet, J. M., Zamora-Muñoz, C., Robles, S., Álvarez, M., Alba-Tercedor, J., Toro, M., Pujante, A. M., Munné, A., & Prat, N. (2007). Concordance between ecotypes and macroinvertebrate assemblages in Mediterranean streams. Freshwater Biology, 52, 2240–2255.

    Article  Google Scholar 

  • Sandin, L. (2009a). The relationship between land-use, hydromorphology and river biota at different spatial and temporal scales: a synthesis of seven case studies. Fundamental and Applied Limnology Archiv für Hydrobiologie, 174, 1–5.

    Article  Google Scholar 

  • Sandin, L. (2009b). The effects of catchment land-use, near-stream vegetation, and river hydromorphology on benthic macroinvertebrate communities in a south-Swedish catchment. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 174, 75–87.

    Article  Google Scholar 

  • Smith, A. P., Westerna, A. W., & Hannah, M. C. (2013). Linking water quality trends with land use intensification in dairy farming catchments. Journal of Hydrology, 476, 1–12.

    Article  CAS  Google Scholar 

  • Solis, M., Mugni, H., Hunt, L., Marrochi, N., Fanelli, S., & Bonetto, C. (2016). Land use effect on invertebrate assemblages in Pampasic streams (Buenos Aires, Argentina). Environmental Monitoring and Assessment, 188, 539.

    Article  Google Scholar 

  • Strahler, A. N. (1952). Hypsometric analysis of erosional topography. Bull. Geological Society of America, 63, 923–938.

    Article  Google Scholar 

  • Strayer, D. L., Beighley, R. E., Thompson, L. C., Brooks, S., Nilsson, C., Pinay, G., & Naiman, R. J. (2003). Effects of land cover on stream ecosystems: roles of empirical models and scaling issues. Ecosystems, 6, 407–423.

    Article  Google Scholar 

  • Tran, C. P., Bode, R. W., Smith, A. J., & Kleppel, G. S. (2010). Land-use proximity as a basis for assessing stream water quality in New York State (USA). Ecological Indicators, 10, 727–733.

  • Vaughan, I. P., & Ormerod, J. (2005). Increasing the value of principal components analysis for simplifying ecological data: a case study with rivers and river birds. Journal of Applied Ecology, 42, 487–497.

    Article  Google Scholar 

  • Vrebos, D., Beauchard, O., & Meire, P. (2017). The impact of land use and spatial mediated processes on the water quality in a river system. Science of the Total Environment, 601–602, 365–373.

    Article  Google Scholar 

  • Yates, J. A., Bailey, R. C., & Schwindt, J. A. (2007). Effectiveness of best management practices in improving stream ecosystem quality. Hydrobiologia, 583, 331–344.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to all colleagues who contributed to developing this study and two anonymous reviewers who improved greatly this article. We also thank Christine Lucas for her valuable suggestions to improve the manuscript.

Funding

This study was partially financed by the National Direction of the Environment (DINAMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Arocena.

Appendix

Appendix

Table 7 Morphological parameters of the basins in the Santa Lucía watershed

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arocena, R., Chalar, G. & Pacheco, J.P. Agriculture and elevation are the main factors for Pampasic stream habitat and water quality. Environ Monit Assess 190, 254 (2018). https://doi.org/10.1007/s10661-018-6622-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6622-6

Keywords

Navigation