Skip to main content

Advertisement

Log in

Assessment of snow-glacier melt and rainfall contribution to stream runoff in Baspa Basin, Indian Himalaya

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Hydrological regimes of most of the Himalayan river catchments are poorly studied due to sparse hydro-meteorological data. Hence, stream runoff assessment becomes difficult for various socio-industrial activities in the Himalaya. Therefore, an attempt is made in this study to assess the stream runoff of Baspa River in Himachal Pradesh, India, by evaluating the contribution from snow-ice melt and rainfall runoff. The total volume of flow was computed for a period of 15 years, from 2000 to 2014, and validated with the long-term field discharge measurements, obtained from Jaipee Hydropower station (31° 32′ 35.53″ N, 78° 00′ 54.80″ E), at Kuppa barrage in the basin. The observations suggest (1) a good correlation (r2 > 0.80) between the modeled runoff and field discharge measurements, and (2) out of the total runoff, 81.2% are produced by snowmelt, 11.4% by rainfall, and 7.4% from ice melt. The catchment receives ~75% of its total runoff in the ablation period (i.e., from May to September). In addition, an early snowmelt is observed in accumulation season during study period, indicating the significant influence of natural and anthropogenic factors on high-altitude areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahluwalia, R. S., Rai, S. P., Jain, S. K., Kumar, B., & Dobhal, D. P. (2013). Assessment of snowmelt runoff modeling and isotope analysis: a case study from the western Himalaya, India. Annals of Glaciology, 54(62), 299–304.

    Article  CAS  Google Scholar 

  • Anderson, E. A. (1976). A point energy and mass balance model of a snow cover. NOAA technical report-NWS 19 (pp. 1–150). Washington, DC: NOAA.

    Google Scholar 

  • Archer, D. R., & Fowler, H. J. (2004). Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrological and Earth System Sciences, 8, 47–61.

    Article  Google Scholar 

  • Archer, D. R., Forsythe, N., Fowler, H. J., & Shah, S. M. (2010). Sustainability of water resources management in the Indus Basin under changing climatic conditions. Hydrological and Earth System Sciences, 14, 1669–1680.

    Article  Google Scholar 

  • Arora, M., Rathore, D. S., Singh, R. D., Kumar, R., & Kumar, A. (2010). Estimation of melt contribution to total streamflow in River Bhagirathi and River DhauliGanga at Loharinag Pala and Tapovan Vishnugad project sites. Journal of Water Resource and Protection, 2, 636–643.

    Article  Google Scholar 

  • Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303–309.

    Article  CAS  Google Scholar 

  • Barros, V. R., Field, C. B., Dokke, D. J., Mastrandrea, M. D., Mach, K. J., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., & Girma, B. (2014). Climate change 2014: impacts, adaptation, and vulnerability-Part B: regional aspects-Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

  • Basnett, S., Kulkarni, A. V., & Bolch, T. (2013). The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India. Journal of Glaciology, 59(218), 1035–1046.

    Article  Google Scholar 

  • Bengtsson, L. (1980). Evaporation from a solid snow cover. Nordic Hydrology, 11, 221–234.

    Google Scholar 

  • Bolch, T., Kulkarni, A., Kääb, A., et al. (2012). The state and fate of Himalayan glaciers. Science, 336, 310–314.

    Article  CAS  Google Scholar 

  • Bookhagen, B., & Burbank, D. W. (2010). Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research, 115, F3.

    Article  Google Scholar 

  • Braun, L. N., Grabs, W., & Rana, B. (1993). Application of a conceptual precipitation runoff model in Langtang Khola Basin, Nepal Himalaya. Snow and Glacier Hydrology, 218, 221–237.

    Google Scholar 

  • Cai, M., Yang, S., Zeng, H., Zhao, C., & Wang, S. (2014). A distributed hydrological model driven by multi-source spatial data 289 and its application in the Ili River Basin of central Asia. Water Resources Management, 28, 2851–2866.

    Article  Google Scholar 

  • Chen, Y., Weihong, L., Fang, G., & Zhi, L. (2016). Hydrological modeling in glacierized catchments of central Asia: status and challenges. Hydrological and Earth System Sciences Discussion. https://doi.org/10.5194/hess-2016-325.

  • Cogley, J. G. (2009). Geodetic and direct mass-balance measurements: comparison and joint analysis. Annals of Glaciology, 50(50), 96–100.

    Article  Google Scholar 

  • Duell, L. F. W. (1994). The sensitivity of northern Sierra Nevada stream-flow to climate change. Water Resources Bulletin, 30(5), 841–859.

    Article  Google Scholar 

  • Feddema, J. J. (1998). Estimated impacts of soil degradation on the African water balance and climate. Climate Research, 10(2), 127–141.

    Article  Google Scholar 

  • Gaddam, V. K., Kulkarni, A. V., & Gupta, A. K. (2016). Estimation of glacial retreat and mass loss in Baspa Basin, western Himalaya. Spatial Information Research, 24, 257–266.

    Article  Google Scholar 

  • Gaddam, V. K., Kulkarni, A. V., & Gupta, A. K. (2017a). Reconstruction of specific mass balance for glaciers in western Himalaya using seasonal sensitivity characteristic(s). Journal of Earth System Science, 126, 55.

    Article  Google Scholar 

  • Gaddam, V. K., Kulkarni, A. V., Gupta, A. K., & Sharma, P. (2017b). Mass balance estimation using geodetic method for glaciers in Baspa Basin, western Himalaya. Current Science, 113(3), 486–492.

    Article  Google Scholar 

  • Gantayat, P., Kulkarni, A. V., & Srinivasan, J. (2014). Estimation of ice thickness using surface velocities and slope: case study at Gangotri glacier, India. Journal of Glaciology, 60(220), 277–282.

    Article  Google Scholar 

  • Gardelle, J., Berthier, E., & Arnaud, Y. (2012). Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geoscience, 5, 322–325.

    Article  CAS  Google Scholar 

  • Hall, D. K., & Riggs, G. A. (2016). MODIS/Terra Snow Cover 8-Day L3 Global 500m Grid, version 6 [Baspa Basin boundary], Boulder, Colorado USA- NASA National Snow and Ice Data Center Distributed Active Archive Center. [17 September 2016]. https://doi.org/10.5067/MODIS/MOD10A2.006.

  • Hock, R. (2005). Glacier melt: a review of processes and their modelling. Progress in Physical Geography, 29(3), 362–391.

    Article  Google Scholar 

  • Immerzeel, W. W., Droogers, P., de Jong, S. M., & Bierkens, M. F. P. (2009). Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sensing of Environment, 113(1), 40–49.

    Article  Google Scholar 

  • Immerzeel, W. W., Van Beek, L. P. H., & Bierkens, M. F. P. (2010). Climate change will affect the Asian water towers. Science, 328(5984), 1382–1385.

    Article  CAS  Google Scholar 

  • Immerzeel, W. W., Van Beek, L. P. H., Konz, M., et al. (2012). Hydrological response to climate change in glacierized catchment in the Himalayas. Climatic Change. https://doi.org/10.1007/s10584-011-0143-4.

  • Jain, C. K. (2002). Hydro-chemical study of a mountainous watershed: the Ganga, India. Water Resources, 36, 1262–1274.

    CAS  Google Scholar 

  • Jeelani, G., Feddema, J. J., Van derVeen, J. J., & Stearns, L. (2012). Role of snow and glacier melt in controlling river hydrology in Liddar watershed (western Himalaya) under current and future climate. Water Resources Research. https://doi.org/10.1029/2011WR011590.

  • Kääb, A., Berthier, E., Nuth, C., Gardelle, J., & Arnaud, Y. (2012). Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412), 495–498.

    Article  Google Scholar 

  • Kaur, R., Kulkarni, A. V., & Chaudhary, B. S. (2010). Using resourcesat-1 data for determination of snow cover and snow-line altitude, Baspa Basin, India. Annals of Glaciology, 50(54), 9–13.

    Article  Google Scholar 

  • Khan, A. A., Chandra, P. N., Sarkar, A., Tandon, S. K., Thamban, M., & Mahalinganathan, K. (2016). The Himalayan cryosphere: a critical assessment and evaluation of glacial melt fraction in the Bhagirathi Basin. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2015.12.009.

  • Koul, M. N., & Ganjoo, R. K. (2010). Impact of inter- and intra-annual variation in weather parameters on mass balance and equilibrium line altitude of Naradu glacier (Himachal Pradesh), NW Himalaya, India. Climatic Change. https://doi.org/10.1007/s10584-009-9660-9.

  • Kulkarni, A. V. (2014). Glaciers as source of water: the Himalaya, sustainable humanity, sustainable nature: our responsibility. Potential Academy of Sciences, 41, 1–6.

    Google Scholar 

  • Kulkarni, A. V., Randhawa, S. S., Rathore, B. P., Bahuguna, I. M., & Sood, R. K. (2002). A snow and glacier melt runoff model to estimate hydropower potential. Journal of the Indian Society of Remote Sensing, 30(4), 221–228.

    Article  Google Scholar 

  • Kulkarni, A. V., Rathore, B. P., & Alex, S. (2004). Monitoring of glacial mass balance in the Baspa Basin using accumulation area ratio method. Current Science, 86(1), 101–106.

    Google Scholar 

  • Kulkarni, A. V., Rathore, B. P., Singh, S. K., & Bahuguna, I. M. (2011). Understanding changes in Himalayan cryosphere using remote sensing technique. International Journal of Remote Sensing, 32(3), 601–615.

    Article  Google Scholar 

  • Kumar, V., Singh, P., & Singh, V. (2007). Snow and glacier melt contribution in the Beas River at Pandoh Dam, Himachal Pradesh, India. Hydrological Sciences Journal, 52(2), 376–388.

    Article  Google Scholar 

  • Lutz, S., Anesio, A. M., Jorge Villar, S. E., & Benning, L. G. (2014). Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiology Ecology, 89, 402–414.

    Article  CAS  Google Scholar 

  • Mather, J. R. (1978). The climatic water balance in environmental analysis: Lexington. Mass DC Heath and Company, 239.

  • McCabe, G. J., & Wolock, D. M. (1999). General-circulation-model simulations of future snowpack in the western United States. Journal of the American Water Resources Association, 35, 1473–1484.

    Article  Google Scholar 

  • Pfeffer, W. T., Arendt, A. A., Bliss, A., et al. (2014). The Randolph glacier inventory: a globally complete inventory of glaciers. Journal of Glaciology, 60(221), 537–552.

    Article  Google Scholar 

  • Prasch, M., Mauser, W., & Weber, M. (2012). Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin. The Cryosphere Discussions, 6(5), 4557–4598.

    Article  Google Scholar 

  • Quick, M. C., & Pipes, A. (1977). UBC watershed model. Hydrological Sciences Bulletin, 22, 153–161.

    Article  Google Scholar 

  • Quick, M. C., & Pipes, A. (1988). High mountain snow melt and application of runoff forecasting. Proceedings of Snow Hydrology, 1, 23–26.

    Google Scholar 

  • Raina, V. K., & Srivastava, D. (2008). Glacier atlas of India. Geological Society of India, 126.

  • Rango, A., & Martinec, J. (1995). Revisiting the degree-day method for snowmelt computations. Journal of the American Water Resources Association, 31, 657–669.

    Article  Google Scholar 

  • Rathore, B. P., Kularni, A. V., Randhawa, S. S., Bahuguna, I. M., & Ajai. (2011). Operationalization of snow & glacier melt runoff model to compute hydropower potential in Chenab Basin, Himachal Pradesh, India. Journal of Geosciences, 5(1), 53–59.

    Google Scholar 

  • Revelle, R. R., & Waggoner, P. E. (1983). Effects of carbon dioxide-induced climatic change on water supplies in the western United States, in Changing climate (pp. 252–261). Washington D.C.: National Academy of Press.

    Google Scholar 

  • Rohrer, M., Salzmann, N., Stoffel, M., & Kulkarni, A. V. (2013). Missing (insitu) snow cover data hampers climate change and runoff studies in the Greater Himalayas. Science of The Total Environment, 468–469, S60–S70.

    Article  Google Scholar 

  • Singh, P., & Bengtsson, L. (2004). Hydrological sensitivity of a large Himalayan basin to climate change. Hydrological Processes, 18(13), 2363–2385.

    Article  Google Scholar 

  • Singh, P., & Jain, S. K. (2002). Snow and glacier melt in the Satluj River at Bhakra Dam in the western Himalayan region. Hydrological Sciences Journal, 47(1), 93–106.

    Article  Google Scholar 

  • Singh, P., & Jain, S. K. (2003). Modelling of streamflow and its components for a large Himalayan basin with predominant snowmelt yields. Hydrological Sciences Journal, 48(2), 257–276.

    Article  Google Scholar 

  • Singh, P., & Singh, V. P. (2001). Snow and glacier hydrology. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Singh, P., Jain, S. K., & Kumar, N. (1997). Snow and glacier melt runoff contribution in the Chenab River at Akhnoor. Mountain Research and Development, 17(1), 49–56.

    Article  Google Scholar 

  • Stocker, T. F., Qin, D., Plattner, G. K. et al. (2013). Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.

  • Subramanya, K. (1994). Engineering hydrology. Tata McGraw-Hill publications. ISBN: 9780074624494, 392 pages.

  • Thornthwaite, C. W., & Mather, J. R. (1955). The water balance. Climate, 8(1), 1–80.

    Google Scholar 

  • Tiwari, S., Kar, S. C., & Bhatla, R. (2015). Snowfall and snowmelt variability over Himalayan region in inter-annual timescale. Aquatic Procedia, 4, 942–949.

    Article  Google Scholar 

  • Wagnon, P., Linda, A., Arnaud, Y., et al. (2007). Four years of mass balance on Chhota Shigri glacier-Himachal Pradesh, India, a new benchmark glacier in the western Himalaya. Journal of Galciology, 53(183), 603–611.

    Article  Google Scholar 

  • Wulf, H., Bookhagen, B., & Scherler, D. (2016). Differentiating between rain, snow, and glacier contributions to river discharge in the western Himalaya using remote-sensing data and distributed hydrological modeling. Advanced in Water Resources, 88, 152–169.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Ravichandran, Director; Dr. Thamban Meloth (project lead); Dr. Parmanand Sharma, Dr. Laluraj and other team members of Cryosphere Project, NCAOR, for their continuous support. A special thanks to Dr. Helgi Bjornsson, University of Iceland, and Dr. Sriram Gullapalli, National Institute of Oceanography, for their technical suggestions and help in the programming. Also thanks to MOES for the financial support, USGS (Earth Explorer), and BBMB for providing the MODIS snow cover products, Landsat 8 OLI images, and meteorological data of Rakcham Observatory. Sincere and heartfelt thanks to Jaypee hydropower group and Dr. S. S.Randhawa, State centre for Climate change, Himachal Pradesh for their enormous support byproviding the monthly mean field discharge data for research purpose. This is NCAOR contributionnumber 30/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Kumar Gaddam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaddam, V., Kulkarni, A.V. & Gupta, A.K. Assessment of snow-glacier melt and rainfall contribution to stream runoff in Baspa Basin, Indian Himalaya. Environ Monit Assess 190, 154 (2018). https://doi.org/10.1007/s10661-018-6520-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6520-y

Keywords

Navigation