Skip to main content

Advertisement

Log in

Environmental evaluation of the life cycle of elephant grass fertilization—Cenchrus purpureus (Schumach.) Morrone—using chemical fertilization and biosolids

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Law 12305/10, National Solid Waste Policy of Brazil, banned the disposal in landfills of any solid waste that could be converted to another use. Sludge produced at Industrial Wastewater Treatment Plants, which contains components characteristic of fertilizers, falls into this category. This type of sludge, also known as a biosolid, has great potential to replace commercial chemical fertilization. The use of biosolids in agriculture allows for compliance with new legislation, reducing the burden on landfills and reusing a waste product. The present paper utilizes the life cycle assessment methodology to compare the carbon footprint associated with the use of different quantities of biosolid and selected chemical fertilizers in the production of elephant grass. The IPCC 2013 GWP 100a method, which is based on data published by the Intergovernmental Panel on Climate Change, was selected as the environmental assessment method. The method expresses the emissions of greenhouse gases generated, in kilograms of CO2 equivalent, over a time horizon of 100 years. The biosolid quantities used were based on the Brazilian Environment Council Resolution 375. The chemical fertilizer used contained urea, simple superphosphate, and potassium chloride. The use of biosolids in the amounts calculated according to Brazilian standards resulted in a carbon footprint approximately 17.7% lower than the use of the chemical fertilization mix, with similar productivity in both cases. The transportation of biosolids to the experimental area was responsible for the majority of emissions associated with the use of biosolids. Urea synthesis was the largest contributor to emissions resulting from the use of commercial chemical fertilizer, accounting for 73.6% of total emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abrahão, R., Carvalho, M., & Causapé, J. (2017). Carbon and water footprints of irrigated corn and non-irrigated wheat in Northeast Spain. Environmental Science Pollution Research, 24(6), 5647–5663. https://doi.org/10.1007/s11356-016-8322-5.

    Article  Google Scholar 

  • Aesa (2016). Paraíba State Water Management Agency (Agência Executiva de Gestão das Águas do Estado da Paraíba). Data base. http://www.aesa.pb.gov.br/aesa-website/meteorologia-chuvas/. Accessed 15 April 2016.

  • Agri-Footprint (2015). Database. http://www.agri-footprint.com/. Accessed 15 March 2016.

  • ANDA–Associação Nacional para Difusão de Adubos. (2008). Anuário Estatístico do setor de fertilizantes 2007. São Paulo.

  • Barbosa, G. M. C., & Tavares Filho, J. (2006). Uso agrícola do lodo de esgoto: influência nas propriedades químicas e físicas do solo, produtividade e recuperação de áreas degradadas. Semina: Ciências Agrárias, 27(4), 565–580.

  • Baumann, H., & Tillman, A. M. (2004). The hitch hiker’s guide to LCA. An orientation in life cycle assessment methodology and application. Goteborg (Sweden): Studentlitteratur.

    Google Scholar 

  • Berton, R. S., Valadares, J. M. A. S., Camargo, O. A., & Bataglia, O. C. (1997). Peletização de lodo de esgoto e adição de CaCO3 na produção de matéria seca e absorção de Zn, Cu, Ni, pelo milho em três latossolos. Revista Brasileira de Ciência do Solo, 21(4), 685–691. https://doi.org/10.1590/S0100-06831997000400020.

    Article  CAS  Google Scholar 

  • Biscaia, R. C. M., & Miranda, G. M. (1996). Uso do lodo de esgoto calado na produção de milho. Sanare, 5, 86–89.

    Google Scholar 

  • Brazil (1972). Technical Bulletin. SUDENE-DRN, Pedological Series. Ministry of Agriculture. National Department of Agricultural Research. Division of Pedological Research. Exploratory survey-recognition of soils of the state of Paraíba. Rio de Janeiro, 15 (8), 683p.

  • Brazil (2006). Resolution 375, from 29 August 2006. http://www.mma.gov.br/port/conama/res/res06/res37506.pdf. Accessed 02 January 2016.

  • Brazil (2010). Law 12305, from 2 August 2010. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=636. Accessed 12 January 2016.

  • Cassini, S. T. (2003). Digestão de resíduos orgânicos e aproveitamento do biogás. Rio de Janeiro: ABES.

    Google Scholar 

  • Cripps, R. W., Winfree, S. K., & Reagan, J. L. (1992). Effects of sewage sludge application method on corn production. Communications in Soil Science and Plant Analysis, 23(15-16), 1705–1715. https://doi.org/10.1080/00103629209368698.

    Article  Google Scholar 

  • Davis, J., & Haglund, C. (1999). Life cycle inventory (LCI) of fertiliser production. Fertiliser products used in Sweden and Western Europe. In SIK Report no. 654. Goteborg (Sweden): SIK, The Swedish Institute for Food and Biotechnology.

  • Ecoinvent (2013). Database, version 3. http://www.ecoinvent.ch. Accessed 01 December 2015.

  • Galdos, M. V., de Maria, I. C., & Camargo, O. A. (2004). Atributos químicos e produção de milho em um Latossolo Vermelho eutorférrico tratado com lodo de esgoto. Revista Brasileira de Ciência do Solo, 28(3), 569–577. https://doi.org/10.1590/S0100-06832004000300017.

    Article  CAS  Google Scholar 

  • Guinée, J. B. (2001). Life cycle assessment: an operational guide to the ISO standards; LCA in perspective; guide; operational annex to guide. The Netherlands: Centre for Environmental Science, Leiden University.

    Google Scholar 

  • Guinée, J. B. (2002). Handbook on life cycle assessment: operational guide to the ISO standards. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Hargreaves, G. H., & Samani, Z. A. (1982). Estimation of potential evapotranspiration. Journal of Irrigation and Drainage Division ASCE, 108(3), 225–230.

    Google Scholar 

  • Hidracor (2015). Paint industry. http://www.hidracor.com.br. Accessed 06 December 2015.

  • IPCC-Intergovernmental Panel on Climate Change. (2007). Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, 982pp: Cambridge University Press. https://doi.org/10.1017/CBO9780511546013.

    Book  Google Scholar 

  • IPCC-Intergovernmental Panel on Climate Change. (2013). Revised supplementary methods and good practice guidance arising from the kyoto protocol. http://www.ipcc-nggip.iges.or.jp/public/kpsg/. Accessed 06 December 2015.

  • ISO 14040-International Organization for Standardization. (2006). Environmental management—life cycle assessment—principles and framework. Geneva.

  • ISO 14044-International Organization for Standardization. (2006). Environmental management—life cycle assessment—requirements and guidelines. Geneva.

  • Kongshaug, G. (1998). IFA technical conference. In: Energy consuption and greenhouse gas emission in fertilizer production, 28, 18p.

  • Lopes, J. C., Ribeiro, L. G., Araújo, M. G., & Beraldo, M. R. B. S. (2005). Produção de alface com doses de lodo de esgoto. Horticultura Brasileira, 23(1), 143–147. https://doi.org/10.1590/S0102-05362005000100030.

    Article  Google Scholar 

  • Melo, W. J., Marques, M. O., Santiago, G., Chelli, R. A., & Leite, S. A. S. (1994). Efeito de doses crescentes de lodo de esgoto sobre frações da matéria orgânica e CTC de um latossolo cultivado com cana-de-açúcar. Revista Brasileira de Ciência do Solo, 18, 449–455.

    Google Scholar 

  • Neves, T.I. (2017). Aproveitamento energético do biossólido gerado por indústria têxtil como fertilizante para a produção de capim-elefante–Cenchrus purpureus (Schumach.) Morrone. 2017. Masters dissertation. Universidade Federal da Paraíba, João Pessoa, Brazil.

  • Oliveira, F.C. (2000). Disposição de lodo de esgoto e composto de lixo urbano num latossolo vermelho-amarelo cultivado com cana de açúcar. PhD Thesis. Universidade de São Paulo, São Paulo, Brazil.

  • Pedroza, M. M., Vieira, G. E. G., & Sousa, J. F. (2011). Características químicas de lodos de esgotos produzidos no Brasil. Revista AIDIS de Ingeniería y Ciencias Ambientales: Investigation, desarrollo e práctica, 4(2), 35–47.

    Google Scholar 

  • Polglase, P.J., & Myers, B.J. (1996). Tree plantations for recycling effluent and biossolids in Australia. In Eldridge, K. G. (Ed.), Environmental management: the role of eucalypts and other fast cropping species: Proceedings (pp. 100–109). Collingwood: CSIRso.

  • Pré-consultants (2014a). SimaPro database manual methods library. Pré Consultants. http://www.pre-sustainability.com/. Accessed 02 December 2015.

  • Pré-consultants (2014b). Website do SimaPro. http://www.pre-sustainability.com/. Accessed 02 December 2015.

  • Saraiva, V. M., & Konig, A. (2013). Produtividade do capim-elefante-roxo irrigado com efluente doméstico tratado no semiárido potiguar e suas utilidades. Holos, 29(1), 28–46.

    Article  Google Scholar 

  • Silva, J. E., Resck, D. V. S., & Sharma, R. D. (2002). Alternativa agronômica para o biossólido produzido no Distrito Federal: I. Efeito na produção de milho e na adição de metais pesados em latossolo no Cerrado. Revista Brasileira de Ciência do Solo, 26, 487–495.

    Article  CAS  Google Scholar 

  • Trannin, I. C. B., Siqueira, J. O., & Moreira, F. M. S. (2005). Avaliação agronômica de um biossólido industrial para a cultura de milho. Pesquisa Agropecuária Brasileira, 40(3), 261–269. https://doi.org/10.1590/S0100-204X2005000300010.

    Article  Google Scholar 

  • Tsadilas, C. D., Matsi, T., Barbayiannis, N., & Dimoyiannis, D. (1995). Influence of sewage sludge application on soil properties and on the distribution and availability of heavy metal fractions. Communications in Soil Science and Plant Analysis, 26(15-16), 2603–2619. https://doi.org/10.1080/00103629509369471.

    Article  CAS  Google Scholar 

  • Van Raij, B. (1998). Uso agrícola de biossólidos. In: Seminário sobre gerenciamento de biossólidos no Mercosul (pp. 147-151), Curitiba: Sanepar; ABES.

  • Von Sperling, M., Freire, V. H., & Chernicharo, C. A. L. (2001). Performance evaluation of a UASB-activated sludge system treating municipal wastewater. Water Science and Technology, 43, 323–328.

    Google Scholar 

Download references

Funding

This work was supported by the National Council for Scientific and Technological Development (CNPq), under projects 303199/2015-6, 305419/2015-3, and 401687/2016-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Abrahão.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neves, T.I., Uyeda, C.A., Carvalho, M. et al. Environmental evaluation of the life cycle of elephant grass fertilization—Cenchrus purpureus (Schumach.) Morrone—using chemical fertilization and biosolids. Environ Monit Assess 190, 30 (2018). https://doi.org/10.1007/s10661-017-6406-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6406-4

Keywords

Navigation