Skip to main content
Log in

Estimation of tile drainage contribution to streamflow and nutrient loads at the watershed scale based on continuously monitored data

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Nitrogen losses from artificially drained watersheds degrade water quality at local and regional scales. In this study, we used an end-member mixing analysis (EMMA) together with high temporal resolution water quality and streamflow data collected in the 122 km2 Otter Creek watershed located in northeast Iowa. We estimated the contribution of three end-members (groundwater, tile drainage, and quick flow) to streamflow and nitrogen loads and tested several combinations of possible nitrate concentrations for the end-members. Results indicated that subsurface tile drainage is responsible for at least 50% of the watershed nitrogen load between April 15 and November 1, 2015. Tiles delivered up to 80% of the stream N load while providing only 15–43% of the streamflow, whereas quick flows only marginally contributed to N loading. Data collected offer guidance about areas of the watershed that should be targeted for nitrogen export mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baker, J. L., Campbell, K. L., Johnson, H. P., & Hanway, J. J. (1975). Nitrate, phosphorus, and sulfate in subsurface drainage water. Journal of Environmental Quality, 4(3), 406–412.

    Article  CAS  Google Scholar 

  • Basu, N. B., Jindal, P., Schilling, K. E., Wolter, C. F., & Takle, E. S. (2012). Evaluation of analytical and numerical approaches for the estimation of groundwater travel time distribution. Journal of Hydrology, 475, 65–73.

    Article  Google Scholar 

  • Blann, K. L., Anderson, J. L., Sands, G. R., & Vondracek, B. (2009). Effects of agricultural drainage on aquatic ecosystems: a review. Critical Reviews in Environmental Science and Technology, 39(11), 909–1001.

    Article  CAS  Google Scholar 

  • Brodie, R. S., & Hostetler, S. (2005). A review of techniques for analysing baseflow from stream hydrographs. In Proceedings of the NZHS-IAH-NZSSS 2005 conference (Vol. 28).

    Google Scholar 

  • Burkart, M. R., Kolpin, D. W., & James, D. E. (1999). Assessing groundwater vulnerability to agrichemical contamination in the Midwest US. Water Science and Technology, 39(3), 103–112.

    CAS  Google Scholar 

  • David, M. B., Drinkwater, L. E., & McIsaac, G. F. (2010). Sources of nitrate yields in the Mississippi River Basin. Journal of Environmental Quality, 39(5), 1657–1667.

    Article  CAS  Google Scholar 

  • Dinnes, D. L., Karlen, D. L., Jaynes, D. B., Kaspar, T. C., Hatfield, J. L., Colvin, T. S., & Cambardella, C. A. (2002). Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils. Agronomy Journal, 94(1), 153–171.

    Article  Google Scholar 

  • Elrashidi, M. A., Mays, M. D., Ali, F., Seybold, C. A., Harder, J. L., Peaslee, S. D., & VanNeste, P. (2005). Loss of nitrate-nitrogen by runoff and leaching for agricultural watersheds. Soil Science, 170(12), 969–984.

    Article  CAS  Google Scholar 

  • Evans, R. O., Wayne Skaggs, R., & Wendell Gilliam, J. (1995). Controlled versus conventional drainage effects on water quality. Journal of Irrigation and Drainage Engineering, 121(4), 271–276.

    Article  Google Scholar 

  • Galloway, J. N., & Likens, G. E. (1981). Acid precipitation: the importance of nitric acid. Atmospheric Environment (1967), 15(6), 1081–1085.

    Article  CAS  Google Scholar 

  • Garrett, J. D. (2012). Concentrations, loads, and yields of select constituents from major tributaries of the Mississippi and Missouri Rivers in Iowa, water years 2004–2008. US Geological Survey Scientific Investigations Report, 5240, 72.

    Google Scholar 

  • Hallberg, George R. 1987. Nitrates in Iowa groundwater.

    Google Scholar 

  • Heppell, C. M., & Chapman, A. S. (2006). Analysis of a two-component hydrograph separation model to predict herbicide runoff in drained soils. Agricultural Water Management, 79(2), 177–207.

    Article  Google Scholar 

  • Howes, Mary R. Private well tracking system wells. (2005).

    Google Scholar 

  • Ikenberry, C. D., Soupir, M. L., Schilling, K. E., Jones, C. S., & Seeman, A. (2014). Nitrate-nitrogen export: magnitude and patterns from drainage districts to downstream river basins. Journal of Environmental Quality, 43(6), 2024–2033.

    Article  CAS  Google Scholar 

  • Jha, M. K., Wolter, C. F., Schilling, K. E., & Gassman, P. W. (2010). Assessment of total maximum daily load implementation strategies for nitrate impairment of the Raccoon River, Iowa. Journal of Environmental Quality, 39(4), 1317–1327.

    Article  CAS  Google Scholar 

  • Jones, C. S., Seeman, A., Kyveryga, P. M., Schilling, K. E., Kiel, A., Chan, K. S., & Wolter, C. F. (2016). Crop rotation and Raccoon River nitrate. Journal of Soil and Water Conservation, 71(3), 206–219.

    Article  Google Scholar 

  • Kanwar, R. S., Johnson, H. P., Schult, D., Fenton, T. E., & Hickman, R. D. (1983). Drainage needs and returns in north-Central Iowa. Transactions of the ASAE, 26(2), 457.

    Article  Google Scholar 

  • Karamouz, M., Nazif, S., & Falahi, M. (2012). Hydrology and hydroclimatology: principles and applications. CRC Press.

  • Kladivko, E. J., Van Scoyoc, G. E., Monke, E. J., Oates, K. M., & Pask, W. (1991). Pesticide and nutrient movement into subsurface tile drains on a silt loam soil in Indiana. Journal of Environmental Quality, 20(1), 264–270.

    Article  CAS  Google Scholar 

  • Kross, B. C., Hallberg, G. R., Roger Bruner, D., Cherryholmes, K., & Kent Johnson, J. (1993). The nitrate contamination of private well water in Iowa. American Journal of Public Health, 83(2), 270–272.

    Article  CAS  Google Scholar 

  • Leach, Nicholas Persak. 2015. Hydrologic response of land use and land cover changes.

  • Logan, T. J., Eckert, D. J., & Beak, D. G. (1994). Tillage, crop and climatic effects of runoff and tile drainage losses of nitrate and four herbicides. Soil and Tillage Research, 30(1), 75–103.

    Article  Google Scholar 

  • Malone, R. W., Jaynes, D. B., Kaspar, T. C., Thorp, K. R., Kladivko, E., Ma, L., James, D. E., Singer, J., Morin, X. K., & Searchinger, T. (2014). Cover crops in the upper midwestern United States: simulated effect on nitrate leaching with artificial drainage. Journal of Soil and Water Conservation, 69(4), 292–305.

    Article  Google Scholar 

  • Mellander, P.-E., Melland, A. R., Jordan, P., Wall, D. P., Murphy, P. N. C., & Shortle, G. (2012). Quantifying nutrient transfer pathways in agricultural catchments using high temporal resolution data. Environmental Science & Policy, 24, 44–57.

    Article  CAS  Google Scholar 

  • Miller, M. P., Susong, D. D., Shope, C. L., Heilweil, V. M., & Stolp, B. J. (2014). Continuous estimation of baseflow in snowmelt-dominated streams and rivers in the upper Colorado River Basin: a chemical hydrograph separation approach. Water Resources Research, 50(8), 6986–6999.

    Article  CAS  Google Scholar 

  • Miller, M. P., Tesoriero, A. J., Capel, P. D., Pellerin, B. A., Hyer, K. E., & Burns, D. A. (2016). Quantifying watershed-scale groundwater loading and in-stream fate of nitrate using high-frequency water quality data. Water Resources Research, 52(1), 330–347.

    Article  CAS  Google Scholar 

  • Müller, K., Deurer, M., Hartmann, H., Bach, M., Spiteller, M., & Frede, H.-G. (2003). Hydrological characterisation of pesticide loads using hydrograph separation at different scales in a German catchment. Journal of Hydrology, 273(1), 1–17.

    Article  Google Scholar 

  • NASS, USDA. (2015). CropScape-cropland data layer. Washington: US Department of Agriculture, National Agricultural Statistics Service http://nassgeodata.gmu.edu/CropScape.

    Google Scholar 

  • National Research Council. (2007). The Mississippi River and the Clean Water Act: Progress, Challenges, and Opportunities. Washington, DC: National Academies Press.

    Google Scholar 

  • NRCS, United States. Natural Resources Conservation Service. (1995). Soil survey geographic (SSURGO) Data Base: data use information. National Cartography and GIS Center.

  • Perica, S., Martin, D., Pavlovic, S., Roy, M. S. L. I., Trypaluk, C., Unruh, D., Yekta, M., & Bonnin, G. (2013). NOAA Atlas 14 Point Precipitation Frequency Estimates: IA. Hydrometeorological Design Studies Center: Precipitation Frequency Data Server.

    Google Scholar 

  • PRISM. 2014. http://www.prism.oregonstate.edu/.

  • Randall, G. W., & Vetsch, J. A. (2005). Nitrate losses in subsurface drainage from a corn–soybean rotation as affected by fall and spring application of nitrogen and nitrapyrin. Journal of Environmental Quality, 34(2), 590–597.

    Article  CAS  Google Scholar 

  • Robinson, M., Rycroft, D. W., Skaggs, R. W., & van Schilfgaarde, J. (1999). The impact of drainage on streamflow. American Society of Agronomy.

  • Sanford, W. E., & Selnick, D. L. (2013). Estimation of evapotranspiration across the conterminous United States using a regression with climate and land-cover data1. JAWRA Journal of the American Water Resources Association, 49(1), 217–230.

    Article  Google Scholar 

  • Schilling, K. E. (2002). Chemical transport from paired agricultural and restored prairie watersheds. Journal of Environmental Quality, 31(4), 1184–1193.

    Article  CAS  Google Scholar 

  • Schilling, K. E. (2005). Relation of baseflow to row crop intensity in Iowa. Agriculture, Ecosystems & Environment, 105(1), 433–438.

    Article  Google Scholar 

  • Schilling, K. E., & Helmers, M. (2008a). Tile drainage as karst: conduit flow and diffuse flow in a tile-drained watershed. Journal of Hydrology, 349(3), 291–301.

    Article  Google Scholar 

  • Schilling, K. E., & Helmers, M. (2008b). Effects of subsurface drainage tiles on streamflow in Iowa agricultural watersheds: exploratory hydrograph analysis. Hydrological Processes, 22(23), 4497–4506.

    Article  Google Scholar 

  • Schilling, K. E., & Libra, R. D. (2003a). Increased baseflow in Iowa over the second half of the 20th century 1 (pp. 851–860).

    Google Scholar 

  • Schilling, K. E., & Libra, R. D. (2003b). Increased baseflow in Iowa over the second half of the 20th century1. JAWRA Journal of the American Water Resources Association, 39(4), 851–860.

    Article  Google Scholar 

  • Schilling, K. E., & Wolter, C. F. (2009). Modeling nitrate-nitrogen load reduction strategies for the Des Moines River, Iowa using SWAT. Environmental Management, 44(4), 671–682.

    Article  Google Scholar 

  • Schilling, K., & Zhang, Y.-K. (2004). Baseflow contribution to nitrate-nitrogen export from a large, agricultural watershed, USA. Journal of Hydrology, 295(1), 305–316.

    Article  CAS  Google Scholar 

  • Schilling, K. E., Jindal, P., Basu, N. B., & Helmers, M. J. (2012a). Impact of artificial subsurface drainage on groundwater travel times and baseflow discharge in an agricultural watershed, Iowa (USA). Hydrological Processes, 26(20), 3092–3100.

    Article  Google Scholar 

  • Schilling, K. E., Jones, C. S., Seeman, A., Bader, E., & Filipiak, J. (2012b). Nitrate-nitrogen patterns in engineered catchments in the upper Mississippi River basin. Ecological Engineering, 42, 1–9.

    Article  Google Scholar 

  • Schilling, K. E., Wolter, C. F., Isenhart, T. M., & Schultz, R. C. (2015). Tile drainage density reduces groundwater travel times and compromises riparian buffer effectiveness. Journal of Environmental Quality, 44(6), 1754–1763.

    Article  CAS  Google Scholar 

  • Shanley, J. B., Kendall, C., Smith, T. E., Wolock, D. M., & McDonnell, J. J. (2002). Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA. Hydrological Processes, 16(3), 589–609.

    Article  Google Scholar 

  • Smith, D. R., King, K. W., Johnson, L., Francesconi, W., Richards, P., Baker, D., & Sharpley, A. N. (2015). Surface runoff and tile drainage transport of phosphorus in the midwestern United States. Journal of Environmental Quality, 44(2), 495–502.

    Article  CAS  Google Scholar 

  • Strategy, Iowa Nutrient Reduction. (2013). A science and technology-based framework to assess and reduce nutrients to Iowa waters and the Gulf of Mexico. Ames: Iowa Department of Agriculture and Land Stewardship, Iowa Department of Natural Resources, and Iowa State University College of Agriculture and Life Sciences.

    Google Scholar 

  • Swenson, D. & Eathington, L. (2013). Agriculture and Agriculture‐Related Manufacturing Economic Impacts in Iowa. No. 35967. Iowa State University, Department of Economics.

  • Tomer, M. D., & Burkart, M. R. (2003). Long-term effects of nitrogen fertilizer use on ground water nitrate in two small watersheds. Journal of Environmental Quality, 32(6), 2158–2171.

    Article  CAS  Google Scholar 

  • Tomer, M. D., Porter, S. A., Boomer, K. M. B., James, D. E., Kostel, J. A., Helmers, M. J., Isenhart, T. M., & McLellan, E. (2015). Agricultural conservation planning framework: 1. Developing multipractice watershed planning scenarios and assessing nutrient reduction potential. Journal of Environmental Quality, 44(3), 754–767.

    Article  CAS  Google Scholar 

  • U.S. Geological Survey. (2015). National Water Information System data available on the World Wide Web (USGS Water Data for the Nation), at URL [http://waterdata.usgs.gov/ia/nwis/]. Accessed 15 Dec 2015.

  • Witzke, B. J., Anderson, R. R., Bunker, B., & Pope, J. P. (2010). Depth to Bedrock: Isopach of Unconsolidated Materials. Iowa Geological and Water Survey, DNR.

  • Zhang, Y.-K., & Schilling, K. E. (2006). Increasing streamflow and baseflow in Mississippi River since the 1940s: effect of land use change. Journal of Hydrology, 324(1), 412–422.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the United States Department of Agriculture under the award number: 69-6114-15-011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arenas Amado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arenas Amado, A., Schilling, K.E., Jones, C.S. et al. Estimation of tile drainage contribution to streamflow and nutrient loads at the watershed scale based on continuously monitored data. Environ Monit Assess 189, 426 (2017). https://doi.org/10.1007/s10661-017-6139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6139-4

Keywords

Navigation