Skip to main content
Log in

Evaluating the performance of a retrofitted stormwater wet pond for treatment of urban runoff

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This paper describes the performance of a retrofitted stormwater retention pond (Ashby Pond) in Northern Virginia, USA. Retrofitting is a common practice which involves modifying existing structures and/or urban landscapes to improve water quality treatment, often compromising standards to meet budgetary and site constraints. Ashby Pond is located in a highly developed headwater watershed of the Potomac River and the Chesapeake Bay. A total maximum daily load (TMDL) was imposed on the Bay watershed by the US Environmental Protection Agency in 2010 due to excessive sediment and nutrient loadings leading to eutrophication of the estuary. As a result of the TMDL, reducing nutrient and sediment discharged loads has become the key objective of many stormwater programs in the Bay watershed. The Ashby Pond retrofit project included dredging of accumulated sediment to increase storage, construction of an outlet structure to control flows, and repairs to the dam. Due to space limitations, pond volume was less than ideal. Despite this shortcoming, Ashby Pond provided statistically significant reductions of phosphorus, nitrogen, and suspended sediments. Compared to the treatment credited to retention ponds built to current state standards, the retrofitted pond provided less phosphorus but more nitrogen reduction. Retrofitting the existing stock of ponds in a watershed to at least partially meet current design standards could be a straightforward way for communities to attain downstream water quality goals, as these improvements represent reductions in baseline loads, whereas new ponds in new urban developments simply limit future load increases or maintain the status quo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alberti, M., Booth, D., Hill, K., Coburn, B., Avolio, C., Coe, S., et al. (2007). The impact of urban patterns on aquatic ecosystems: an empirical analysis in Puget lowland sub-basins. Landscape and Urban Planning, 80(4), 345–361. doi:10.1016/j.landurbplan.2006.08.001.

    Article  Google Scholar 

  • Allmendinger, N. E., Pizzuto, J. E., Moglen, G. E., & Lewicki, M. (2007). A sediment budget for an urbanizing watershed, 1951–1996, Montgomery County, Maryland, U.S.A. JAWRA Journal of the American Water Resources Association, 43(6), 1483–1498. doi:10.1111/j.1752-1688.2007.00122.x.

    Article  Google Scholar 

  • Barrett, M. (2008). Comparison of BMP performance using the international BMP database. Journal of Irrigation and Drainage Engineering, 134(5), 556–561. doi:10.1061/(ASCE)0733-9437(2008)134:5(556).

    Article  Google Scholar 

  • Beasley, G., & Kneale, P. (2002). Reviewing the impact of metals and PAHs on macroinvertebrates in urban watercourses. Progress in Physical Geography, 26(2), 236–270. doi:10.1191/0309133302pp334ra.

    Article  Google Scholar 

  • Bilotta, G. S., & Brazier, R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water Research, 42(12), 2849–2861. doi:10.1016/j.watres.2008.03.018.

    Article  CAS  Google Scholar 

  • Blecken, G.-T., Hunt, W. F., Al-Rubaei, A. M., Viklander, M., & Lord, W. G. (2017). Stormwater control measure (SCM) maintenance considerations to ensure designed functionality. Urban Water Journal, 14(3), 278–290. doi:10.1080/1573062X.2015.1111913.

    Article  CAS  Google Scholar 

  • Booth, D. B., & Jackson, C. R. (1997). Urbanization of aquatic systems: degradation thresholds, stormwater detection, and the limits of mitigation. JAWRA Journal of the American Water Resources Association, 33(5), 1077–1090. doi:10.1111/j.1752-1688.1997.tb04126.x.

    Article  Google Scholar 

  • Booth, D. B., Hartley, D., & Jackson, R. (2002). Forest cover, impervious-surface area, and the mitigation of stormwater impacts. JAWRA Journal of the American Water Resources Association, 38(3), 835–845. doi:10.1111/j.1752-1688.2002.tb01000.x.

    Article  Google Scholar 

  • Brater, E., & King, H. (1976). Handbook of hydraulics, for the solution of hydraulic engineering problems (6th ed.). New York: McGraw-Hill, Inc..

    Google Scholar 

  • Camponelli, K. M., Lev, S. M., Snodgrass, J. W., Landa, E. R., & Casey, R. E. (2010). Chemical fractionation of Cu and Zn in stormwater, roadway dust and stormwater pond sediments. Environmental Pollution, 158(6), 2143–2149. doi:10.1016/j.envpol.2010.02.024.

    Article  CAS  Google Scholar 

  • Carey, R. O., Hochmuth, G. J., Martinez, C. J., Boyer, T. H., Dukes, M. D., Toor, G. S., et al. (2013). Evaluating nutrient impacts in urban watersheds: challenges and research opportunities. Environmental Pollution, 173, 138–149. doi:10.1016/j.envpol.2012.10.004.

    Article  CAS  Google Scholar 

  • Characklis, G., & Wiesner, M. (1997). Particles, metals, and water quality in runoff from large urban watershed. Journal of Environmental Engineering, 123(8), 753–759. doi:10.1061/(ASCE)0733-9372(1997)123:8(753).

    Article  CAS  Google Scholar 

  • Chesapeake Stormwater Network (CSN) (2011). CSN technical bulletin no. 9: nutrient accounting methods to document local stormwater load reductions in the Chesapeake Bay watershed.

  • Chin, A. (2006). Urban transformation of river landscapes in a global context. Geomorphology, 79(3–4), 460–487. doi:10.1016/j.geomorph.2006.06.033.

    Article  Google Scholar 

  • Chretien, F., Gagnon, P., Theriault, G., & Guillou, M. (2016). Performance analysis of a wet-retention pond in a small agricultural catchment. [Article]. Journal of Environmental Engineering, 142(4), 10. doi:10.1061/(asce)ee.1943-7870.0001081.

    Article  Google Scholar 

  • Cianfrani, C. M., Hession, W. C., & Rizzo, D. M. (2006). Watershed imperviousness impacts on stream channel condition in southeastern Pennsylvania. Journal of the American Water Resources Association, 42(4), 941–956. doi:10.1111/j.1752-1688.2006.tb04506.x.

    Article  Google Scholar 

  • Crunkilton, R., Kleist, J., Ramcheck, J., DeVita, W., & Villeneuve, D. (1996). Assessment of the response of aquatic organisms to long-term in situ exposures of urban runoff. In L. A. Roesner (Ed.), Effects of watershed development and management on aquatic ecosystems. American Society of Civil Engineers: New York.

    Google Scholar 

  • Dietz, M. E., & Clausen, J. C. (2008). Stormwater runoff and export changes with development in a traditional and low impact subdivision. Journal of Environmental Management, 87(4), 560–566. doi:10.1016/j.jenvman.2007.03.026.

    Article  Google Scholar 

  • Dong, W., Li, H. E., & Li, J. K. (2013). Monitoring and analysis on evolution process of rainfall runoff water quality in urban area. Environmental Science, 34(2), 561–569.

    Google Scholar 

  • Dorman, M. E., Hartigan, J. P., Steg, R. F., & Quasebarth, T. F. (1996). Retention, detention and overland flow for pollutant removal from highway stormwater runoff, Vol. 1: Research Report. Federal Highway Administration Report (pp. 166).

  • Easton, Z. M., & Petrovic, A. M. (2008a). Determining nitrogen loading rates based on land use in an urban watershed. In The Fate of Nutrients and Pesticides in the Urban Environment (Vol. 997, pp. 19–42, ACS Symposium Series, Vol. 997). American Chemical Society.

  • Easton, Z. M., & Petrovic, A. M. (2008b). Determining phosphorus loading rates based on land use in an urban watershed. In The Fate of Nutrients and Pesticides in the Urban Environment (Vol. 997, pp. 43–62, ACS Symposium Series, Vol. 997). American Chemical Society.

  • Edwards, A. C., & Withers, P. J. A. (2008). Transport and delivery of suspended solids, nitrogen and phosphorus from various sources to freshwaters in the UK. Journal of Hydrology, 350(3–4), 144–153. doi:10.1016/j.jhydrol.2007.10.053.

    Article  CAS  Google Scholar 

  • Erickson, A. J., Weiss, P. T., & Gulliver, J. S. (2013). Optimizing stormwater treatment practices. Springer Science & Business Media, 2, 13–15.

    Google Scholar 

  • Feld, C. K., Birk, S., Bradley, D. C., Hering, D., Kail, J., Marzin, A., et al. (2011). Chapter three—from natural to degraded rivers and back again: a test of restoration ecology theory and practice. In W. Guy (Ed.), Advances in Ecological Research (Vol. Volume 44, pp. 119–209): Academic Press.

  • Fitch, E. B. (1958). Detention time concepts. Sewage and Industrial Wastes, 30(11), 1361–1363. doi:10.2307/25033740.

    Google Scholar 

  • Fletcher, T. D., Andrieu, H., & Hamel, P. (2013). Understanding, management and modelling of urban hydrology and its consequences for receiving waters: a state of the art. Advances in Water Resources, 51, 261–279. doi:10.1016/j.advwatres.2012.09.001.

    Article  Google Scholar 

  • Fong, D. Y. T., Kwan, C. W., Lam, K. F., & Lam, K. S. L. (2003). Use of the sign test for the median in the presence of ties. American Statistician, 57(4), 237–240.

    Article  Google Scholar 

  • Galli, J. (1990). Thermal impacts associated with urbanization and urban stormwater management practices. (pp. 198). Washington, DC: Metropolitan Washington Council of Governments.

    Google Scholar 

  • GC, & WWE. (2009). Urban stormwater BMP performance monitoring. Washington, DC: USEPA.

    Google Scholar 

  • GC and WWE (2012a). BMP performance summary: Chesapeake Bay and related areas. International Stormwater BMP Database.

  • GC and WWE (2012b). International stormwater best management practices (BMP) database pollutant category summary: statistical addendum: TSS, bacteria, nutrients, and metals.

  • Grizzard, T. J., Randall, C. W., & Ellis, K. (1986). Effectiveness of extended detention ponds. In Engineering Foundation Conference on Urban Runoff – Impact and Quality Management Technology, Henniker, NH, 1986 (pp. 323–337)

  • Hancock, G. S., Holley, J. W., & Chambers, R. M. (2010). A field-based evaluation of wet retention ponds: how effective are ponds at water quantity control? JAWRA Journal of the American Water Resources Association, 46(6), 1145–1158. doi:10.1111/j.1752-1688.2010.00481.x.

    Article  Google Scholar 

  • Hartigan, J. P., Quasebarth, T. F., & Southerland, E. (1983). Calibration of NPS model loading factors. Journal of Environmental Engineering, 109(6), 1259–1272.

    Article  CAS  Google Scholar 

  • Hathaway, J. M., Hunt, W. F., & Simmons III, O. D. (2010). Statistical evaluation of factors affecting indicator bacteria in urban storm-water runoff. Journal of Environmental Engineering, 136(12), 1360–1368.

    Article  CAS  Google Scholar 

  • Helsel, D. R. (2012). Statistics for censored environmental data using Minitab and R. Hoboken: John Wiley and Sons.

    Google Scholar 

  • Helsel, D. R., & Hirsch, R. M. (2002). Statistical methods in water resources, techniques of water resources investigations 04-A3. Techniques of water-resources investigations of the United States Geological Survey (Vol. 04-A3, p. 523). Reston: U.S. Geological Survey.

    Google Scholar 

  • Herb, W. R., Janke, B., Mohseni, O., & Stefan, H. G. (2008). Thermal pollution of streams by runoff from paved surfaces. Hydrological Processes, 22(7), 987–999.

    Article  Google Scholar 

  • Hester, E. T., & Bauman, K. S. (2013). Stream and retention pond thermal response to heated summer runoff from urban impervious surfaces. Journal of the American Water Resources Association, 49(2), 328–342. doi:10.1111/jawr.12019.

    Article  Google Scholar 

  • Hewlett, J. D., & Fortson, J. C. (1982). Stream temperature under an inadequate buffer strip in the southeast Piedmont. JAWRA Journal of the American Water Resources Association, 18(6), 983–988. doi:10.1111/j.1752-1688.1982.tb00105.x.

    Article  Google Scholar 

  • Hogan, D. M., & Walbridge, M. R. (2007). Best management practices for nutrient and sediment retention in urban stormwater runoff. Journal of Environmental Quality, 36(2), 386–395. doi:10.2134/jeq2006.0142.

    Article  CAS  Google Scholar 

  • Jacobson, C. R. (2011). Identification and quantification of the hydrological impacts of imperviousness in urban catchments: a review. Journal of Environmental Management, 92(6), 1438–1448. doi:10.1016/j.jenvman.2011.01.018.

    Article  Google Scholar 

  • Jones, M. P., & Hunt, W. F. (2010). Effect of storm-water wetlands and wet ponds on runoff temperature in trout sensitive waters. [Article]. Journal of Irrigation and Drainage Engineering, 136(9), 656–661. doi:10.1061/(asce)ir.1943-4774.0000227.

    Article  Google Scholar 

  • Jones, M., Hunt, W., & Winston, R. (2012). Effect of urban catchment composition on runoff temperature. Journal of Environmental Engineering, 138(12), 1231–1236. doi:10.1061/(ASCE)EE.1943-7870.0000577.

    Article  CAS  Google Scholar 

  • Khan, S., Melville, B. W., & Shamseldin, A. Y. (2011). Retrofitting a stormwater retention pond using a deflector island. [Article]. Water Science & Technology, 63(12), 2867–2872. doi:10.2166/wst.2011.569.

    Article  CAS  Google Scholar 

  • Kumar, R., Martell, S. J., Pitcher, T. J., & Varkey, D. A. (2013). Temperature-driven decline of a Cisco population in Mille Lacs Lake, Minnesota. North American Journal of Fisheries Management, 33(4), 669–681. doi:10.1080/02755947.2013.785992.

    Article  Google Scholar 

  • Leopold, L. B. (1968). Hydrology for urban land planning: a guidebook on the hydrologic effects of urban land use. In United States Geological Survey (Ed.), Circular (pp. 18).

  • Line, D. E., & White, N. M. (2007). Effects of development on runoff and pollutant export. Water Environment Research, 79(2), 185–189.

    Article  CAS  Google Scholar 

  • Ma, J., Ying, G., & Sansalone, J. (2010). Transport and distribution of particulate matter phosphorus fractions in rainfall-runoff from roadway source areas. Journal of Environmental Engineering, 136(11), 1197–1205. doi:10.1061/ASCEEE.1943-7870.0000263.

    Article  CAS  Google Scholar 

  • Maxted, J. R., & Shaver, E. (1999) The use of retention basins to mitigate stormwater impacts to aquatic life. In National Conference on Retrofit Opportunities for Water Resource Protection in Urban Environments, Chicago, IL, EPA/625/R-99/002. USEPA, Cincinnatti, OH, (pp. 6–15).

  • Mejía, A. I., & Moglen, G. E. (2010). Impact of the spatial distribution of imperviousness on the hydrologic response of an urbanizing basin. Hydrological Processes, 24(23), 3359–3373. doi:10.1002/hyp.7755.

    Article  Google Scholar 

  • Merrikhpour, H., & Jalali, M. (2013). The effects of road salt application on the accumulation and speciation of cations and anions in an urban environment. Water and Environment Journal, 27(4), 524–534. doi:10.1111/j.1747-6593.2012.00371.x.

    Article  CAS  Google Scholar 

  • Minton, G. R. (2005). Stormwater management: biological, chemical and engineering principles (2nd ed.). Seattle: Resource Planning Associates.

    Google Scholar 

  • Moglen, G. E., & Kim, S. (2007). Limiting imperviousness are threshold-based policies a good idea? Journal of the American Planning Association, 73(2), 161–171. doi:10.1080/01944360708976150.

    Article  Google Scholar 

  • Moore, T. L. C., & Hunt, W. F. (2012). Ecosystem service provision by stormwater wetlands and ponds—a means for evaluation? Water Research, 46(20), 6811–6823. doi:10.1016/j.watres.2011.11.026.

    Article  CAS  Google Scholar 

  • Navratil, O., Breil, P., Schmitt, L., Grospretre, L., & Albert, M. B. (2013). Hydrogeomorphic adjustments of stream channels disturbed by urban runoff (Yzeron River basin, France). Journal of Hydrology (Amsterdam), 485, 24–36. doi:10.1016/j.jhydrol.2012.01.036.

    Article  Google Scholar 

  • Nelson, E. J., & Booth, D. B. (2002). Sediment sources in an urbanizing, mixed land-use watershed. Journal of Hydrology, 264(1–4), 51–68. doi:10.1016/S0022-1694(02)00059-8.

    Article  Google Scholar 

  • Novotny, V., & Olem, H. (1994). Water quality: prevention, identification, and management of diffuse pollution. New York: Van Nostrand Reinhold.

    Google Scholar 

  • OWML (2001). Quality assurance plan for the Occoquan Watershed Monitoring Laboratory. Manassas.

  • Parkin, T. B., & Robinson, J. B. (1993). Statistical evaluation of median estimators for lognormally distributed variables. Soil Science Society of America Journal, 57(2), 317–323.

    Article  Google Scholar 

  • Poff, N. L., Bledsoe, B. P., & Cuhaciyan, C. O. (2006). Hydrologic variation with land use across the contiguous United States: geomorphic and ecological consequences for stream ecosystems. Geomorphology, 79(3–4), 264–285. doi:10.1016/j.geomorph.2006.06.032.

    Article  Google Scholar 

  • Roseen, R. M., DiGennaro, N., Watts, A., Ballestero, T. P., & Houle, J. (2010) Preliminary results of the examination of thermal impacts from stormwater BMPs. In World Environ. Water Resour. Congress 2010: Challenges of Change, (pp. 16–20).

  • Sample, D. J., Grizzard, T. J., Sansalone, J., Davis, A. P., Roseen, R. M., & Walker, J. (2012). Assessing performance of manufactured treatment devices for the removal of phosphorus from urban stormwater. Journal of Environmental Management, 113, 279–291. doi:10.1016/j.jenvman.2012.08.039.

    Article  CAS  Google Scholar 

  • Schueler, T. R. (1994). The importance of imperviousness. Watershed protection techniques, 1(3), 100–111.

    Google Scholar 

  • Schueler, T., Fraley-McNeal, L., & Cappiella, K. (2009). Is impervious cover still important? Review of recent research. Journal of Hydrologic Engineering, 14(4), 309–315. doi:10.1061/(ASCE)1084-0699(2009)14:4(309).

    Article  Google Scholar 

  • Shaver, E., & Horner, R. R. (2007). Fundamentals of urban runoff management: technical and institutional issues, 2nd edition. North American Lake Management Society.

  • Sønderup, M. J., Egemose, S., Bochdam, T., & Flindt, M. R. (2015a). Treatment efficiency of a wet detention pond combined with filters of crushed concrete and sand: a Danish full-scale study of stormwater. Environmental Monitoring and Assessment, 187(12), 758. doi:10.1007/s10661-015-4975-7.

    Article  Google Scholar 

  • Sønderup, M. J., Egemose, S., Hansen, A. S., Grudinina, A., Madsen, M. H., & Flindt, M. R. (2015b). Factors affecting retention of nutrients and organic matter in stormwater ponds. Ecohydrology.

  • Sonzogni, W. C., Chesters, G., Coote, D. R., Jeffs, D. N., Konrad, J. C., Ostry, R. C., et al. (1980). Pollution from land runoff. Environmental Science & Technology, 14(2), 148–153. doi:10.1021/es60162a003.

    Article  CAS  Google Scholar 

  • Strecker, E. W. (1998) Considerations and approaches for monitoring the effectiveness of urban BMPs. In National Conference on Retrofit Opportunity for Water Resources Protection in Urban Environments.

  • Thackston, E., Shields, F., & Schroeder, P. (1987). Residence time distributions of shallow basins. Journal of Environmental Engineering, 113(6), 1319–1332. doi:10.1061/(ASCE)0733-9372(1987)113:6(1319).

    Article  CAS  Google Scholar 

  • U.S. EPA. (1983a). Results of the nationwide urban runoff program. Washington, D.C.: US Environmental Protection Agency, Water Planning Division.

    Google Scholar 

  • U.S. EPA. (1983b). Results of the nationwide urban runoff program: volume I—final report (Vol. 1, p. 198). Washington, D.C.: U.S. Environmental Protection Agency, Water Planning Division.

    Google Scholar 

  • U.S. EPA (1992). NPDES storm water sampling guidance document. (pp. 185).

  • U.S. EPA (1999). Storm water technology fact sheet. (pp. 7). Washington D.C.

  • U.S. EPA. (2010). Chesapeake Bay total maximum daily load for nitrogen, phosphorus and sediment. Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • U.S. EPA (2015). Storm water management model, version 5.1.007. http://www.epa.gov/nrmrl/wswrd/wq/models/swmm/.

  • University of Virginia Climatology Office (2017). Climate summary (precipitation and temperature) for Vienna Tysons Corner, Virginia, NCDC cooperating station ID 448737. http://climate.virginia.edu/va_pet_prec_diff.htm.

  • Urbonas, B. (1995). Recommended parameters to report with BMP monitoring data. Journal of Water Resources Planning and Management, 121(1), 23-34, doi:Doi:10.1061/(ASCE)0733-9496(1995)121:1(23).

  • Virginia Department of Environmental Quality (VDEQ) (2011). Virginia DEQ stormwater design specification no. 14: wet ponds. (pp. 23).

  • Walker, D. J. (1998). Modelling residence time in stormwater ponds. Ecological Engineering, 10(3), 247–262. doi:10.1016/S0925-8574(98)00016-0.

    Article  Google Scholar 

  • Walsh, C. J., Allison, H. R., Feminella, J. W., Cottingham, P. D., Groffman, P. M., & Ii, R. P. M. (2005). The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society, 24(3), 706–723. doi:10.1899/04-028.1.

    Article  Google Scholar 

  • Wang, L., Lyons, J., Kanehl, P., & Bannerman, R. (2001). Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environmental Management [Environ. Manage.], 28(2), 255–266. doi:10.1007/s0026702409.

    CAS  Google Scholar 

  • Water Environment Federation and Environmental and Water Resources Institute (WEF and EWRI). (2012). Design of urban stormwater controls, second edition, Manual of Practice (MOP) 87. Alexandria: Water Environment Federation.

    Google Scholar 

  • Willey, J. D., Kieber, R. J., Eyman, M. S., & Avery, G. B. (2000). Rainwater dissolved organic carbon: concentrations and global flux. Global Biogeochemical Cycles, 14(1), 139–148.

    Article  CAS  Google Scholar 

  • Winer, R. (2000). National pollutant removal performance database for stormwater treatment practices. Ellicott City: Center for Watershed Protection.

    Google Scholar 

  • Yang, G., Bowling, L. C., Cherkauer, K. A., & Pijanowski, B. C. (2011). The impact of urban development on hydrologic regime from catchment to basin scales. Landscape and Urban Planning, 103(2), 237–247. doi:10.1016/j.landurbplan.2011.08.003.

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their appreciation to Glenn Moglen of Virginia Tech, who provided many insightful comments on the draft paper. We also thank Adrian Fremont of the City of Fairfax, who coordinated approvals and the reconstruction of Ashby Pond; William C. Lucas of Integrated Land Management and Joseph W. McClellan of William H. Gordon Associates, who provided design services for the project; and the staff of the Occoquan Watershed Monitoring Laboratory. The study was supported in part by the National Fish and Wildlife Foundation (Grant no. 2009-0055-017), with matching funds from the City of Fairfax, VA. Funding for this work was provided in part by the Virginia Agricultural Experiment Station and the Hatch program of the National Institute of Food and Agriculture, US Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Sample.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwartz, D., Sample, D.J. & Grizzard, T.J. Evaluating the performance of a retrofitted stormwater wet pond for treatment of urban runoff. Environ Monit Assess 189, 256 (2017). https://doi.org/10.1007/s10661-017-5930-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5930-6

Keywords

Navigation