Skip to main content

Advertisement

Log in

Health risk associated with the consumption of duck egg containing endosulfan residues

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Eight duck farms and a local market in Suphanburi province, Thailand adjacent to paddy fields were selected for this study. The concentrations of endosulfan isomers (α- and β-endosulfan) and endosulfan sulfate in environmental matrices (water, soil, feed) and duck eggs were determined. Human health risk via the contaminated egg consumption was also evaluated. Analysis of environmental matrices found both endosulfan isomers (α- and β-endosulfan) and endosulfan sulfate in most samples. Endosulfan sulfate was predominantly found in all matrices followed by β- and α-endosulfan, respectively. The total endosulfan concentrations were in the following order: feed > soil > water. However, the levels of endosulfan detected were lower than the regulatory maximum residue limit of endosulfan, except in water (>0.200 ng mL−1). Endosulfan sulfate in duck egg samples was also predominantly detected in both yolk and albumin. The average total endosulfan residues (∑endosulfan) in yolk (6.73 ng g−1) were higher than in albumin (4.78 ng g−1). According to principle component analysis, we found that paddy soil surrounding the duck farms is the suspected source of endosulfan contamination in husbandry water which subsequently contaminates duck eggs. The estimated daily intakes (EDIs) of these endosulfan-contaminated eggs were well below the acceptable daily intake (ADI) for endosulfan (6 μg kg−1 day−1). However, the consumption of this contaminated duck eggs should be of concerns in regard to chronic exposure. Therefore, the better environmental managements to reduce endosulfan residues can play a crucial role for decreasing human health risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abduljaleel, S. A., & Shuhaimi-Othman, M. (2011). Metals concentrations in eggs of domestic avia and estimation of health risk from eggs consumption. Journal of Biological Sciences, 11(7), 448–453.

    Article  CAS  Google Scholar 

  • Ahmad, R., Salem, N. M., & Estaitieh, H. (2010). Occurrence of organochlorine pesticide residues in eggs, chicken and meat in Jordan. Chemosphere, 78(6), 667–671. doi:10.1016/j.chemosphere.2009.12.012.

    Article  CAS  Google Scholar 

  • Akoto, O., Andoh, H., Darko, G., Eshun, K., & Osei-Fosu, P. (2013). Health risk assessment of pesticides residue in maize and cowpea from Ejura, Ghana. Chemosphere, 92(1), 67–73. doi:10.1016/j.chemosphere.2013.02.057.

    Article  CAS  Google Scholar 

  • ATSDR (2013). Toxicological profile for endosulfan. http://www.atsdr.cdc.gov/toxprofiles/tp41.html.

  • Aulakh, R. S., Gill, J. P. S., Bedi, J. S., Sharma, J. K., Joia, B. S., & Ockerman, H. W. (2006). Organochlorine pesticide residues in poultry feed, chicken muscle and eggs at a poultry farm in Punjab, India. Journal of the Science of Food and Agriculture, 86(5), 741–744. doi:10.1002/jsfa.2407.

    Article  CAS  Google Scholar 

  • Berntssen, M. H. G., Glover, C. N., Robb, D. H. F., Jakobsen, J.-V., & Petri, D. (2008). Accumulation and elimination kinetics of dietary endosulfan in Atlantic salmon (Salmo salar). Aquatic Toxicology, 86(1), 104–111. doi:10.1016/j.aquatox.2007.10.006.

    Article  CAS  Google Scholar 

  • Boobis, A. R., Ossendorp, B. C., Banasiak, U., Hamey, P. Y., Sebestyen, I., & Moretto, A. (2008). Cumulative risk assessment of pesticide residues in food. Toxicology Letters, 180(2), 137–150. doi:10.1016/j.toxlet.2008.06.004.

    Article  CAS  Google Scholar 

  • Carrera, G., Fernández, P., Grimalt, J. O., Ventura, M., Camarero, L., Catalan, J., Nickus, U., Thies, H., & Psenner, R. (2002). Atmospheric deposition of organochlorine compounds to remote high mountain lakes of Europe. Environmental Science & Technology, 36(12), 2581–2588. doi:10.1021/es0102585.

    Article  CAS  Google Scholar 

  • CCME (2004). Canadian environmental quality guidelines, Summary of existing Canadian quality guidelines updated 2004. http://www.ccme.ca/assets/pdf/e1_06.pdf.

  • Chaiyarat, R., Sookjam, C., Eiam-Ampai, K., & Damrongphol, P. (2015). Organochlorine pesticide levels in the food web in rice paddies of bueng boraphet wetland, Thailand. Environmental Monitoring and Assessment, 187(5), 1–10. doi:10.1007/s10661-015-4469-7.

    Article  CAS  Google Scholar 

  • Desalegn, B., Takasuga, T., Harada, K. H., Hitomi, T., Fujii, Y., Yang, H.-R., Wang, P., Senevirathna, S., & Koizumi, A. (2011). Historical trends in human dietary intakes of endosulfan and toxaphene in China, Korea and Japan. Chemosphere, 83(10), 1398–1405. doi:10.1016/j.chemosphere.2011.02.063.

    Article  CAS  Google Scholar 

  • Domingo, J. L. (2014). Health risks of human exposure to chemical contaminants through egg consumption: a review. Food Research International, 56, 159–165. doi:10.1016/j.foodres.2013.12.036.

    Article  CAS  Google Scholar 

  • EFSA. (2005). Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to endosulfan as undesirable substance in animal feed. European Food Safety Authority Journal, 234, 1–29.

    Google Scholar 

  • EFSA. (2011). Statement on oral toxicity of endosulfan in fish. European Food Safety Authority Journal, 9(4), 22.

    Google Scholar 

  • EU (2012). Pesticide residues MRLs. In D. G. f. H. Consumers (Ed.).

  • Fan, S. (2008). Endosulfan risk characterization document. Volume III, http://www.cdpr.ca.gov/docs/emon/pubs/tac/finaleval/endosulfan.htm.

    Google Scholar 

  • Fang, Y., Nie, Z., Yang, Y., Die, Q., Liu, F., He, J., & Huang, Q. (2014). Human health risk assessment of pesticide residues in market-sold vegetables and fish in a northern metropolis of China. Environmental Science and Pollution Research, 1–9, doi:10.1007/s11356-014-3822-7.

  • FAO/WHO. (2010). FAO/WHO meeting on pesticide residues: pestivide residues in food 2010. Report of the joint meeting of the FAO panel of experts on pesticide residues in food and the environment ant the WHO core assessment group on pesticide residues. Italy: Rome.

    Google Scholar 

  • Fiddler, W., Pensabene, J. W., Gates, R. A., & Donoghue, D. J. (1999). Supercritical fluid extraction of organochlorine pesticides in eggs. Journal of Agricultural and Food Chemistry, 47(1), 206–211. doi:10.1021/jf980436m.

    Article  CAS  Google Scholar 

  • Hamilton, D. J., Ambrus, Á., Dieterle, R. M., Felsot, A. S., Harris, C. A., Holland, P. T., Katayama, A., Kurihara, N., Linders, J., Unsworth, J., & Wong, S.-S. (2003). Regulatory limits for pesticide residues in water (IUPAC Technical Report). Pure and Applied Chemistry, 75(8), 1123–1155.

    Article  CAS  Google Scholar 

  • Huang, JF., & Lin, CC. (2011). 21 - Production, composition, and quality of duck eggs. In Y. Nys, M. Bain, & F. V. Immerseel (Eds.), Improving the safety and quality of eggs and egg products (pp. 487–508): Woodhead Publishing.

  • IPEN (2008). International persistent organic pesticide elimilation network. www.ipen.org/ipenweb/poprc/newpops.html.

  • IPM (2015). Banned pesticides. www.thailand.ipm-info.org/pesticides/pesticides_banned.htm.

  • Jia, H., Liu, L., Sun, Y., Sun, B., Wang, D., Su, Y., Kannan, K., & Li, Y.-F. (2010). Monitoring and modeling endosulfan in Chinese surface soil. Environmental Science & Technology, 44(24), 9279–9284. doi:10.1021/es102791n.

    Article  CAS  Google Scholar 

  • Keith, L., & Telliard, W. (1979). ES&T special report: priority pollutants: I—a perspective view. Environmental Science & Technology, 13(4), 416–423. doi:10.1021/es60152a601.

    Article  Google Scholar 

  • Keithmaleesatti, S., Thirakhupt, K., Pradatsudarasar, A., Varanusupakul, P., Kitana, N., & Robson, M. (2007). Concentration of organochlorine in egg yolk and reproductive success of Egretta garzetta (Linnaeus, 1758) at Wat Tan-en non-hunting area, Phra Nakhorn Si Ayuthaya Province, Thailand. Ecotoxicology and Environmental Safety, 68(1), 79–83. doi:10.1016/j.ecoenv.2006.08.004.

    Article  CAS  Google Scholar 

  • Kumari, B., Madan, V. K., & Kathpal, T. S. (2006). Monitoring of pesticide residues in fruits. Environmental Monitoring and Assessment, 123(1–3), 407–412. doi:10.1007/s10661-006-1493-7.

    Article  CAS  Google Scholar 

  • Leonard, A. W., Hyne, R. V., Lim, R. P., Leigh, K. A., Le, J., & Beckett, R. (2001). Fate and toxicity of endosulfan in Namoi river water and bottom sediment. Journal of Environmental Quality, 30(3), doi:10.2134/jeq2001.303750x.

  • Luzardo, O. P., Rodríguez-Hernández, Á., Quesada-Tacoronte, Y., Ruiz-Suárez, N., Almeida-González, M., Henríquez-Hernández, L. A., Zumbado, M., & Boada, L. D. (2013). Influence of the method of production of eggs on the daily intake of polycyclic aromatic hydrocarbons and organochlorine contaminants: an independent study in the Canary Islands (Spain). Food and Chemical Toxicology, 60, 455–462. doi:10.1016/j.fct.2013.08.003.

    Article  CAS  Google Scholar 

  • Maneepitak, S., & Cochard, R. (2014). Uses, toxicity levels, and environmental impacts of synthetic and natural pesticides in rice fields-A survey in Central Thailand. International Journal of Biodiversity Science, Ecosystems Services and Management, 10(2), 144–156. doi:10.1080/21513732.2014.905493.

    Article  Google Scholar 

  • Mekonen, S., Ambelu, A., & Spanoghe, P. (2014). Pesticide residue evaluation in major staple food items of Ethiopia using the QuEChERS method: a case study from the Jimma Zone. Environmental Toxicology and Chemistry, 33(6), 1294–1302. doi:10.1002/etc.2554.

    Article  CAS  Google Scholar 

  • Mukherjee, I., & Gopal, M. (1994). Interconversion of stereoisomers of endosulfan on chickpea crop under field conditions. Pesticide Science, 40(2), 103–106. doi:10.1002/ps.2780400203.

    Article  CAS  Google Scholar 

  • Mumtaz, M., Qadir, A., Mahmood, A., Mehmood, A., Malik, R. N., Li, J., Yousaf, Z., Jamil, N., Shaikh, I. A., Ali, H., & Zhang, G. (2015). Human health risk assessment, congener specific analysis and spatial distribution pattern of organochlorine pesticides (OCPs) through rice crop from selected districts of Punjab Province, Pakistan. Science of the Total Environment, 511, 354–361. doi:10.1016/j.scitotenv.2014.12.030.

    Article  CAS  Google Scholar 

  • Nag, S. K., Mahanta, S. K., Raikwar, M. K., & Bhadoria, B. K. (2007). Residues in milk and production performance of goats following the intake of a pesticide (endosulfan). Small Ruminant Research, 67(2–3), 235–242. doi:10.1016/j.smallrumres.2005.10.008.

    Article  Google Scholar 

  • Nakata, H., Kawazoe, M., Arizono, K., Abe, S., Kitano, T., Shimada, H., Li, W., & Ding, X. (2002). Organochlorine pesticides and polychlorinated biphenyl residues in foodstuffs and human tissues from China: status of contamination, historical trend, and human dietary exposure. Archives of Environmental Contamination and Toxicology, 43(4), 0473–0480. doi:10.1007/s00244-002-1254-8.

    Article  CAS  Google Scholar 

  • Naqvi, S. M., & Vaishnavi, C. (1993). Mini review. Bioaccumulative potential and toxicity of endosulfan insecticide to non-target animals. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 105(3), 347–361.

    Article  CAS  Google Scholar 

  • Park, J. S., Shin, S. K., Kim, W. I., & Kim, B. H. (2011). Residual levels and identify possible sources of organochlorine pesticides in Korea atmosphere. Atmospheric Environment, 45(39), 7496–7502. doi:10.1016/j.atmosenv.2010.10.030.

    Article  CAS  Google Scholar 

  • Peterson, S. M., & Batley, G. E. (1993). The fate of endosulfan in aquatic ecosystems. Environmental Pollution, 82(2), 143–152. doi:10.1016/0269-7491(93)90111-Z.

    Article  CAS  Google Scholar 

  • Pingel, H. (2009). Waterfowl production for food safety. In Proceedings of the IV world waterfowl conference, Thrissur, India (pp. 3–13). Kerala Agricultural University and World’s Poultry Science Association (India Branch)

  • Poolpak, T., Pokethitiyook, P., Kruatrachue, M., Arjarasirikoon, U., & Thanwaniwat, N. (2008). Residue analysis of organochlorine pesticides in the Mae Klong river of Central Thailand. Journal of Hazardous Materials, 156(1–3), 230–239. doi:10.1016/j.jhazmat.2007.12.078.

    Article  CAS  Google Scholar 

  • Prassad, K. S. N., & Chhabra, A. (2001). Organochlorine pesticide residues in animal feeds and fodders. Indian Journal of Animal Science, 71(12), 1178–1180.

    Google Scholar 

  • Rice, C. P., Nochetto, C. B., & Zara, P. (2002). Volatilization of trifluralin, atrazine, metolachlor, chlorpyrifos, α-endosulfan, and β-endosulfan from freshly tilled soil. Journal of Agricultural and Food Chemistry, 50(14), 4009–4017. doi:10.1021/jf011571t.

    Article  CAS  Google Scholar 

  • Salem, N. M., Ahmad, R., & Estaitieh, H. (2009). Organochlorine pesticide residues in dairy products in Jordan. Chemosphere, 77(5), 673–678. doi:10.1016/j.chemosphere.2009.07.045.

    Article  CAS  Google Scholar 

  • Sangchan, W., Bannwarth, M., Ingwersen, J., Hugenschmidt, C., Schwadorf, K., Thavornyutikarn, P., Pansombat, K., & Streck, T. (2013). Monitoring and risk assessment of pesticides in a tropical river of an agricultural watershed in northern Thailand. Environmental Monitoring and Assessment, 186(2), 1083–1099. doi:10.1007/s10661-013-3440-8.

    Article  Google Scholar 

  • Schenck, F. J., & Donoghue, D. J. (2000). Determination of organochlorine and organophosphorus pesticide residues in eggs using a solid phase extraction cleanup. Journal of Agricultural and Food Chemistry, 48(12), 6412–6415. doi:10.1021/jf000142c.

    Article  CAS  Google Scholar 

  • Siriwong, W., Thirakhupt, K., Sitticharoenchai, D., Rohitrattana, J., Thongkongowm, P., Borjan, M., & Robson, M. (2008). A preliminary human health risk assessment of organochlorine pesticide residues associated with aquatic organisms from the Rangsit agricultural area, Central Thailand. Human and Ecological Risk Assessment: an International Journal, 14(5), 1086–1097. doi:10.1080/10807030802387929.

    Article  CAS  Google Scholar 

  • Sutherland, T., Horne, I., Weir, K., Russell, R., & Oakeshott, J. (2004). Toxicity and residues of endosulfan isomers. In G. Ware (Ed.), Reviews of environmental contamination and toxicology (Vol. 183, pp. 99–113. Reviews of Environmental Contamination and Toxicology): Springer New York.

  • Tao, Y., Pan, L., Zhang, H., & Tian, S. (2013). Assessment of the toxicity of organochlorine pesticide endosulfan in clams Ruditapes philippinarum. Ecotoxicology and Environmental Safety, 93, 22–30. doi:10.1016/j.ecoenv.2013.03.036.

    Article  CAS  Google Scholar 

  • Thapinta, A., & Hudak, P. F. (2000). Pesticide use and residual occurrence in Thailand. Environmental Monitoring Assessment, 60, 103–114.

    Article  CAS  Google Scholar 

  • USEPA (1980). Analysis of pesticide residues in human and environmental samples - A compilation of methods selected for use in pesticide monitoring programs: EPA-600/80-038.

  • USEPA (2000). Organochlorine pesticides by gas chromatography. Method 8081B. Revision 2, 2000, 57 p. http://epa.gov/sw.846/pdfs/8081b_ivb.pdf.

  • USEPA. (2000b). Ultrasonic extraction, test methods for evaluating solid waste, method 3550C, revision 3. Washington, DC: US Environmental Protection Agency.

    Google Scholar 

  • Vagi, M. C., Petsas, A. S., Kostopoulou, M. N., Karamanoli, M. K., & Lekkas, T. D. (2007). Determination of organochlorine pesticides in marine sediments samples using ultrasonic solvent extraction followed by GC/ECD. Desalination, 210(1–3), 146–156. doi:10.1016/j.desal.2006.06.020.

    Article  CAS  Google Scholar 

  • Van Overmeire, I., Pussemier, L., Hanot, V., De Temmerman, L., Hoenig, M., & Goeyens, L. (2006). Chemical contamination of free-range eggs from Belgium. Food Additives & Contaminants, 23(11), 1109–1122. doi:10.1080/02652030600699320.

    Article  Google Scholar 

  • Walse, S. S., Scott, G. I., & Ferry, J. L. (2003). Stereoselective degradation of aqueous endosulfan in modular estuarine mesocosms: formation of endosulfan [gamma]-hydroxycarboxylate. Journal of Environmental Monitoring, 5(3), 373–379. doi:10.1039/B212165D.

    Article  CAS  Google Scholar 

  • Weber, J., Halsall, C. J., Muir, D., Teixeira, C., Small, J., Solomon, K., Hermanson, M., Hung, H., & Bidleman, T. (2010). Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic. Science of the Total Environment, 408(15), 2966–2984. doi:10.1016/j.scitotenv.2009.10.077.

    Article  CAS  Google Scholar 

  • Windal, I., Hanot, V., Marchi, J., Huysmans, G., Van Overmeire, I., Waegeneers, N., & Goeyens, L. (2009). PCB and organochlorine pesticides in home-produced eggs in Belgium. Science of the Total Environment, 407(15), 4430–4437. doi:10.1016/j.scitotenv.2008.11.063.

    Article  CAS  Google Scholar 

  • Xu, M., Qiu, Y., Bignert, A., Zhou, Y., Zhu, Z., & Zhao, J. (2015). Organochlorines in free-range hen and duck eggs from Shanghai: occurrence and risk assessment. Environmental Science and Pollution Research, 22(3), 1742–1749. doi:10.1007/s11356-014-2935-3.

    Article  CAS  Google Scholar 

  • Yehouenou, A., Pazou, E., Azehoun, J. P., Aléodjrodo, P. E., van Straalen, N. M., van Hattum, B., & van Gestel, C. A. M. (2013). Health risks associated with pesticide residues in sediments, fish, and plants from the Ouémé Valley in the Republic of Bénin. Archives of Environmental Contamination and Toxicology, 65(2), 260–265. doi:10.1007/s00244-013-9895-3.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported in part by the Graduate Program Scholarship from the Graduate School, Kasetsart University, Thailand. Support was also from Kasetsart University Research and Development Institute, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phanwimol Tanhan.

Ethics declarations

Conflict of interest

The contents of the manuscript have not been published previously nor have they been submitted elsewhere for consideration, nor are they in press. All of the authors have read and approved the manuscript. There is no conflict of interest, including any financial, personal, or other relationships with other people or organizations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ketyam, B., Imsilp, K., Poapolathep, A. et al. Health risk associated with the consumption of duck egg containing endosulfan residues. Environ Monit Assess 188, 270 (2016). https://doi.org/10.1007/s10661-016-5268-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5268-5

Keywords

Navigation