Skip to main content
Log in

Effects of soil contamination by trace elements on white poplar progeny: seed germination and seedling vigour

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Seed germination is considered a critical phase in plant development and relatively sensitive to heavy metals. White poplar (Populus alba) trees tend to accumulate Cd and Zn in their tissues. We tested if soil contamination can affect P. alba progeny, reduced seed germination and explored the distribution of mineral elements in the seed. For this purpose, fruits and seeds from female P. alba trees were selected from two contaminated and one non-contaminated areas. Seeds from all the sites were germinated using only water or a nutritive solution (in vitro). Concentrations of nutrients and trace elements in the fruits and seeds were analysed. Seedling growth in vitro was also analysed. Finally, a mapping of different elements within the poplar seed was obtained by particle-induced X-ray emission (PIXE). Germination was similar between different progenies, refuting our hypothesis that seeds from a contaminated origin would have reduced germination capacity compared to those from a non-contaminated site. Seedling growth was not affected by the contaminated origin. Cadmium and Zn concentrations in fruits produced by P. alba trees in the contaminated sites were higher than by those from the non-contaminated site. However, the nutritional status of the trees was adequate in both cases. Cd in seedlings was higher in those from contaminated soils although lower than in fruits, indicating a certain exclusion from seeds. Preliminary results of the PIXE technique showed that Al and Zn were distributed uniformly in the seeds (Cd was not detected with this technique), while the nutrients P and S were concentrated in the cotyledons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bačeva, K., Stafilov, T., & Matevski, V. (2014). Bioaccumulation of heavy metals by endemic Viola species from the soil in the vicinity of the As-Sb-Tl mine “Allchar”, republic of Macedonia. International Journal of Phytoremediation, 16, 347–365.

    Article  Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders strategies in the response to plants of heavy metals. Journal of Plant Nutrition, 3, 643–646.

    Article  CAS  Google Scholar 

  • Bhatia, N. P., Orlic, I., Siegele, R., Ashwath, N., Baker, A. J. M., & Walsh, K. B. (2003). Elemental mapping using PIXE shows the main pathway of nickel movement is principally symplastic within the fruit of the hyperaccumulator Stackhousia tryonii. New Phytologist, 160, 479–488.

    Article  CAS  Google Scholar 

  • Bhatia, N. P., Walsh, K. B., Orlic, I., Siegele, R., Ashwath, N., & Baker, A. J. M. (2004). Quantitative cellular localisation of nickel in leaves and stem of the hyperaccumulator plant Stackhousia tryonii Bailey using nuclear-microprobe (micro-PIXE) and energy dispersive X-ray microanalysis (EDXMA) techniques. Functional Plant Biology, 31, 1–14.

    Article  Google Scholar 

  • Bittsánszky, A., Komives, T., Gullner, G., Gyulai, G., Kiss, J., Heszky, L., Radimszky, L., & Rennemberg, H. (2005). Ability of transgenic poplars with elevated glutathione content to tolerate zinc (2+) stress. Environment International, 31, 251–254.

    Article  Google Scholar 

  • Bowen, H. J. M. (1979). Environmental Chemistry of the Elements. London: Academic Press.

    Google Scholar 

  • Brydges, T., Hall, P., & Loucks, O. (2000). Forest Health and Decline report. Ontario: Ecological Monitoring and Assessment Network.

    Google Scholar 

  • Burgos, P., Madejón, P., Madejón, E., Girón, I., Cabrera, F., & Murillo, J. M. (2013). Natural remediation of an unremediated soil twelve years after a mine accident: trace element mobility and plant composition. Journal of Environmental Management, 114, 36–45.

    Article  CAS  Google Scholar 

  • Cabrera, F., Clemente, L., Díaz Barrientos, E., López, R., & Murillo, J. M. (1999). Heavy metal pollution of soils affected by the Guadiamar toxic flood. The Science of the Total Environment, 242, 117–129.

  • Castiglione, S., Franchin, C., Fossati, T., Lingua, G., Torrigiani, P., & Biondi, S. (2007). High zinc concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar (Populus alba L. cv. Villafranca). Chemosphere, 67, 1117–1126.

  • Chaney, R.L. (1989). Toxic element accumulation in soils and crops: protecting soil fertility and agricultural food-chains. In: Bar-Yosef, B., Barrow & N.J., Goldshmid, J., (eds.), Inorganic Contaminants in the Vadose Zone. Springer-Verlag, Berlin, 140 –158.

  • Ciadamidaro, L., Madejón, E., Puschenreiter, M. &, Madejón, P. (2013). Growth of Populus alba and its influence on soil trace element availability. Science of the Total Environment, 454-455, 337-347.

  • Di Baccio, D., Kopriva, S., Sebastiani, L., & Rennenberg, H. (2005). Does glutathione metabolism have a role in the defense of poplar against zinc excess? New Phytologist, 167, 73–80.

    Article  Google Scholar 

  • Di Lonardo, S., Capuana, M., Arnetoli, M., Gabbrielli, R., & Gonnelli, C. (2011). Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environmental Science and Pollution Research, 18, 82–90.

    Article  CAS  Google Scholar 

  • Domínguez, M. T., Marañón, T., Murillo, J. M., Schulin, R., & Robinson, B. H. (2008). Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environmental Pollution, 152, 50–59.

    Article  Google Scholar 

  • Domínguez, M. T., Madejón, P., Marañón, T., & Murillo, J. M. (2010a). Afforestation of a trace-element polluted area in SW Spain: woody plant performance and trace element accumulation. European Journal of Forest Research, 129, 47–59.

    Article  Google Scholar 

  • Domínguez, M. T., Marañón, T., Murillo, J. M., Schulin, R., & Robinson, B. R. (2010b). Nutritional status of Mediterranean trees growing in a contaminated and remediated area. Water, Air, and Soil Pollution, 205, 305–321.

    Article  Google Scholar 

  • Domínguez, M. T., Alegre, J. M., Madejón, P., Madejón, E., Burgos, P., Cabrera, F., Marañón, T., & Murillo, J. M. (2016). River banks and channels as hotspots of soil pollution after large-scale remediation of a river basin. Geoderma, 261, 133–140.

    Article  Google Scholar 

  • Ernst, W. H. O. (1998). Effects of heavy metals in plants at the cellular and organismic level ecotoxicology. In S. Gerrit & M. Bernd (Eds.), Bioaccumulation and Biological Effects of Chemicals (pp. 587–620). New York: Wiley and Spektrum Akademischer.

    Google Scholar 

  • FAO (2005). European forest sector. Outlook study 1960–2000–2020, Main report. Food and Agriculture Organization of the United Nations. Geneva.

  • García López, J., Ager, F.J., Barbadillo Rank, M., Madrigal, F.J., Ontalba, M.A. et al. (2000). CNA: The first accelerator-based IBA facility in Spain. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 161–163, 1137–1142.

  • Gilabel, A.P., Nogueirol, R.C., Garbo, A.I. & Monteiro, F.A. (2014). The role of sulfur in increasing guinea grass tolerance of copper phytotoxicity. Water, Air and Soil Pollution, 225, article 1806.

  • Gill, S. S., & Tuteja, N. (2011). Cadmium stress tolerance in crop plants. Plant Signaling & Behavior, 6, 215–222.

    Article  CAS  Google Scholar 

  • Grill, E., Winnacker, E.-L., & Zenk, M. H. (1987). Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proccedings of the Natural Academy of Sciences, 84, 439–443.

    Article  CAS  Google Scholar 

  • Grimalt, J. O., Ferrer, M., & Macpherson, E. (1999). The mine tailing accident in Aznalcóllar. The Science of the Total Environment, 217, 3–11.

  • Grime, G. W., Dawson, M., Marsh, M., McArthur, I. C., & Watt, F. (1991). The Oxford submicron nuclear microscopy facility. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 54, 52–63.

    Article  Google Scholar 

  • Gross, R., Auslitz, J., Schramel, P., & Payer, H. D. (1986). Concentrations of lead, cadmium, mercury and other elements in seeds of Lupinus mutabilis and of other legumes. Journal of Environmental Pathology, Toxicology and Oncology, 7, 59–65.

  • Harper, J. L. (1977). Population Biology of Plants. London: Academic Press.

    Google Scholar 

  • Hüttermann, A., Arduini, I., & Godbold, D. L. (1999). Metal pollution and forest decline. In M. N. V. Prasad & J. Hagemeyer (Eds.), Heavy metal stress in plants. From molecules to ecosystems (pp. 253–272). Berlin: Springer.

    Chapter  Google Scholar 

  • Iori, V., Pietrini, F., Massacci, A., & Zacchini, M. (2012). Induction of metal binding compounds and antioxidative defence in callus cultures of two black poplar (P. nigra) clones with different tolerance to cadmium. Plant Cell, Tissue and Organ Culture, 108, 17–26.

  • Jakovljević, T., Bubalo, M. C., Orlović, S., Sedak, M., Bilandžić, N., Brozinčević, I., & Redovniković, I. R. (2014). Adaptive response of poplar (Populus nigra L.) after prolonged Cd exposure period. Environmental Science and Pollution Research, 21, 3792–3802.

  • Jones, J. B., & Case, V. W. (1990). Sampling, handling and analyzing plant tissues samples. In R. L. Westerman (Ed.), Soil testing and plant analysis (pp. 389–427). Madison: Soil Science Society of America.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. Boca Raton: CRC Press.

    Google Scholar 

  • Kachenko, A. G., Bhatia, N. P., Siegele, R., Walsh, K. B., & Singh, B. (2009). Nickel, Zn and Cd localisation in seeds of metal hyperaccumulators using μ-PIXE spectroscopy. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267, 2176–2180.

    Article  CAS  Google Scholar 

  • Kališová-Špirochová, I., Punčochářová, J., Kafka, Z., Kubal, M., Soudek, P., & Vaněk, T. (2003). Accumulation of heavy metals by in vitro cultures of plants. Water, Air and Soil Pollution: Focus, 3, 269–276.

    Article  Google Scholar 

  • Karrenberg, S., & Suter, M. (2003). Phenotypic trade-offs in the sexual reproduction of Salicaceae from flood plains. American Journal of Botany, 90, 749–754.

    Article  Google Scholar 

  • Konishi, Y., Takezoe, R., & Murase, J. (1998). Energy dispersive X-Ray microanalysis of element distribution in Amaranth seed. Bioscience, Biotechnology and Biochemistry, 62, 2288–2290.

  • Kranner, I., & Colville, L. (2011). Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environmental and Experimental Botany, 72, 93–105.

    Article  CAS  Google Scholar 

  • Madejón, P., Murillo, J. M., Marañón, T., Cabrera, F., & López, R. (2002). Bioaccumulation of As, Cd, Cu, Fe and Pb in wild grasses affected by the Aznalcóllar mine spill (SW Spain). The Science of the Total Environment, 290, 105–120.

  • Madejón, P., Murillo, J. M., Marañón, T., Cabrera, F., & Soriano, M. A. (2003). Trace element and nutrient accumulation in sunflower plants two years after the Aznalcóllar mine spill. The Science of the Total Environment, 307, 239–57.

  • Madejón, P., Marañón, T., Murillo, J. M., & Robinson, B. (2004). White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environmental Pollution, 132, 145–155.

  • Madejón, P., Marañón, T., & Murillo, J. M. (2006). Biomonitoring of trace elements in the leaves and fruits of wild olive and holm oak trees. Science of the Total Environment, 355, 187–203.

    Article  Google Scholar 

  • Madejón, P., Murillo, J. M., Marañón, T., & Lepp, N. W. (2007). Factors affecting accumulation of thallium and other trace elements in two wild Brassicaceae spontaneously growing on soils contaminated by tailings dam waste. Chemosphere, 67, 20–28.

    Article  Google Scholar 

  • Madejón, P., Ciadamidaro, L., Marañón, T., & Murillo, J. M. (2013). Long-term biomonitoring of soil contamination using poplar trees: accumulation of trace elements in leaves and fruits. International Journal of Phytoremediation, 15, 602–614.

    Article  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants. London: Academic Press.

    Google Scholar 

  • Mendoza-Cózatl, D. G., Jobe, T. O., Hauser, F., & Schroeder, J. I. (2011). Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Current Opinion in Plant Biology, 14, 554–562.

    Article  Google Scholar 

  • Mesjasz-Przybyowicz, J., Przybyowicz, W. J., Prozesky, V. M., & Pineda, C. A. (1997). Quantitative micro-PIXE comparison of elemental distribution in Ni-hyperaccumulating and non-accumulating genotypes of Senecio coronatus. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 130, 368–373.

  • Mesjasz-Przybyowicz, J., Grodzin´ska, K., Przybyowicz, W. J., Godzik, B., & Szarek-qukaszewska, G. (1999). Micro-PIXE studies of elemental distribution in seeds of Silene vulgaris from a zinc dump in Olkusz, southern Poland. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 158, 306–311.

    Article  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  • Murillo, J. M., Marañón, T., Cabrera, F., & López, R. (1999). Accumulation of heavy metals in sunflower and sorghum plants affected by the Guadiamar spill. The Science of the Total Environment, 242, 281–292.

  • Naylor, R. B. L., & Hutcheson, H. J. A. (1986). The germination behaviour in soil and compost of different seed lots of perennial ryegrass. Crop Research, 25, 123–132.

    Google Scholar 

  • Prasad, M. N. V. (1999). Metallothioneins and metal binding complexes in plants. In M. N. V. Prasad & J. Hagemeyer (Eds.), Heavy metal stress in plants. From molecules to ecosystems (pp. 51–72). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Przybyłowicz, W.J., Mesjasz-Przyby1owicz, J., Migula, P., Turnau, K., Nakonieczny, M., Augustyniak, M. et al. (2004). Elemental microanalysis in ecophysiology using ion microbeam. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 219–220, 57–66.

  • Psaras, G. K., & Manetas, Y. (2001). Nickel localization in seeds of the metal hyperaccumulator Thlaspi pindicum Hausskn. Annals of Botany, 88, 513–516.

    Article  CAS  Google Scholar 

  • Romeo, S., Trupiano, D., Ariani, A., Renzone, G., Scippa, G. S., Scaloni, A., & Sebastiani, L. (2014). Proteomic analysis of Populus × euramericana (clone I-214) roots to identify key factors involved in zinc stress response. Journal of Plant Physiology, 171, 1054–1063.

  • Ross, S. M. (1994). Sources and forms of potentially toxic metals in soil-plant systems. In S. M. Ross (Ed.), Toxic Metals in Soil-Plant System (pp. 3–25). Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  • Schott, K. M., Karst, J., & Landhäusser, S. M. (2014). The role of microsite conditions in restoring trembling aspen (Populus tremuloides Michx) from seed. Restoration Ecology, 22, 292–295.

  • Siegel, R. S., & Brock, J. H. (1990). Germination requirements of key southwestern woody riparian species. Desert Plants, 10, 3–8.

    Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessments of heavy metal levels in estuaries and formation of a pollution index. Helgol Meeresunters, 33, 566–575.

    Article  Google Scholar 

  • Van Splunder, J., Coops, H., Voesenek, L. A. C. J., & Blom, C. W. P. M. (1995). Establishment of alluvial forest species in floodplains: the role of dispersal timing, germination characteristics and water level fluctuations. Acta Botanica Neerlandica, 44, 269–278.

    Article  Google Scholar 

  • Vidal, M., López-Sánchez, J. F., Sastre, J., Jiménez, G., Dagnac, T., & Rubio, R. (1999). Prediction of the impact of the Aznalcóllar toxic spill on the trace element contamination of agricultural soils. The Science of the Total Environment, 242, 131–148.

  • Vogel-Mikuš, K., Pongrac, P., Kump, P., Necêmer, M., Simĉiĉ, J., & Peliconb, P. (2007). Localisation and quantification of elements within seeds of Cd/Zn hyperaccumulator Thlaspi praecox by micro-PIXE. Environmental Pollution, 147, 50–59.

    Article  Google Scholar 

Download references

Acknowledgments

We thank JM Alegre for helping in the field work and Patricia Puente for helping in the lab work. We thank the National Accelerator Centre (CNA) of Seville for the analytical facilities. This study was supported by CGL2011-30285-C02 project, funded by the CICYT of the Spanish Ministerio de Ciencia e Innovación and European FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Madejón.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 13.6 kb)

ESM 2

(DOCX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madejón, P., Cantos, M., Jiménez-Ramos, M.C. et al. Effects of soil contamination by trace elements on white poplar progeny: seed germination and seedling vigour. Environ Monit Assess 187, 663 (2015). https://doi.org/10.1007/s10661-015-4893-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4893-8

Keywords

Navigation