Skip to main content

Advertisement

Log in

Land use/land cover water quality nexus: quantifying anthropogenic influences on surface water quality

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Anthropogenic forces widely influence the composition, configuration, and trend of land use and land cover (LULC) changes with potential implications for surface water quality. These changes have the likelihood of generating non-point source pollution with additional environmental implications for terrestrial and aquatic ecosystems. Monitoring the scope and trajectory of LULC change is pivotal for region-wide planning, tracking the sustainability of natural resources, and meeting the information needs of policy makers. A good comprehension of the dynamics of anthropogenic drivers (proximate and underlying) that influence such changes in LULC is important because any potential adverse change in LULC that may be inimical to sustainable water quality might be addressed at the anthropogenic driver level rather than the LULC change stage. Using a dense time stack of Landsat-5 Thematic Mapper images, a hydrologic water quality and socio-geospatial modeling framework, this study quantifies the role of anthropogenic drivers of LULC change on total suspended solids and total phosphorus concentrations in the Lower Chippewa River Watershed, Wisconsin, at three time steps—1990, 2000, and 2010. Results of the study demonstrated that proximate drivers of LULC change accounted for between 32 and 59 % of the concentration and spatial distribution of total suspended solids, while the extent of phosphorus impairment attributed to the proximate drivers ranged between 31 and 42 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abbaspour, K. C. (2014). User manual for SWAT-CUP 2012. SWAT calibration and uncertainty programs. [105 pp.]Dubendorf, Switzerland: Ewag: Swiss Fed. Inst. Of Aquat. Sci. and Technol; 2014. Accessed June 5, 2014. http://www.eawag.ch/forschung/siam/software/swat/index

  • Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., & Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333, 413–430.

    Article  Google Scholar 

  • Arnold, J. G., Allen, P. M., & Bernhardt, G. (1993). A comprehensive surface-ground flow model. Journal of Hydrology, 142, 47–69.

    Article  Google Scholar 

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part 1: model development. Journal of the American Water Resources Association, 34(1), 73–89.

    Article  CAS  Google Scholar 

  • Brion, G., Brye, K. R., Haggard, B. E., West, C., & Brahana, J. V. (2011). Land-use effects on water quality of a first-order stream in the Ozark highlands, Mid-southern United States. River Research and Applications, 27, 772–790.

    Article  Google Scholar 

  • Busteed, P. R., Storm, D. E., White, M. J., & Stoodley, S. H. (2009). Using SWAT to target critical source sediment and phosphorus areas in the Wister Lake Basin, USA. American Journal of Environmental Sciences, 5(2), 156–163.

    Article  CAS  Google Scholar 

  • Carle, M. V., Halpin, P. N., & Stow, C. A. (2005). Patterns of watershed urbanization and impacts on water quality. Journal of the American Water Resources Association, 41(3), 693–708.

    Article  Google Scholar 

  • Chang, H., & Psaris, M. (2013). Local landscape predictors of maximum stream temperature and thermal sensitivity in the Columbia River Basin, USA. Science of the Total Environment, 461-462, 587–600.

    Article  CAS  Google Scholar 

  • Chasco, C., Garcia, I., & Vicens, J. (2007). Modelling spatial variations in household disposable income with geographically weighted regression, Munich personal RePEc arkhive (MPRA), Working Paper, No. 1682.

  • Chavez Jr., P. S. (1996). Image-based atmospheric corrections—revisited and improved. Photogrammetric Engineering and Remote Sensing, 62, 1025–1036.

    Google Scholar 

  • Choi, J., Engel, B., Muthukrishnan, S., & Harbor, J. (2003). GIS based long term hydrologic impact evaluation for watershed urbanization. Journal of the American Water Resources Association, 39(3), 623–635.

    Article  Google Scholar 

  • Coats, R., Larsen, M., Heyvaert, A., Thomas, J., Luck, M., & Reuter, J. (2008). Nutrient and sediment production, watershed characteristics, and land use in the Tahoe basin, California-Nevada. Journal of the American Water Resources Association, 44(3), 754–770.

    Article  CAS  Google Scholar 

  • Congalton, R. G. (1991). A review of assessing the accuracy of classification of remotely sensed data. Remote Sensing of the Environment, 37, 35–46.

  • Emmerth, P. P., & Bayne, D. R. (1996). Urban influence on phosphorus and sediment loading of West Point Lake, Georgia. Journal of the American Water Resources Association, 32(1), 145–154.

    Article  CAS  Google Scholar 

  • Foglia, L., Hill, M. C., Mehl, S. W., & Burlando, P. (2009). Sensitivity analysis, calibration, and testing of a distributed hydrologic model using error-based weighting and one objective function. Water Resources Research, 45(6), 1–18.

    Article  Google Scholar 

  • Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression: the analysis of spatially varying relationships. West Sussex:John Wiley.

    Google Scholar 

  • Google Earth. (2013). Google Earth Pro (Version 6.1.0.5001) [Software]. Accessed May 20, 2013 Mountain View, CA: Google Earth.

  • Goonetilleke, A., Thomas, E., Ginn, S., & Gilbert, D. (2005). Understanding the role of land use in urban storm water quality management. Journal of Environmental Management, 74(1), 31–42.

    Article  CAS  Google Scholar 

  • He, C. (2003). Integration of geographic information systems and simulation model for watershed management. Environmental Modelling and Software, 18, 809–813.

    Article  Google Scholar 

  • Huang, J., Li, Q., Pontius, R. G., Klemas, V., & Hong, H. (2013). Detecting the dynamic linkage between landscape characteristics and water quality in a subtropical coastal watershed, southeast China. Environmental Management, 51, 32–44.

    Article  Google Scholar 

  • Huang, J., Huang, Y., & Zhang, Z. (2014). Coupled effects of natural and anthropogenic controls on seasonal and spatial variations of river water quality during baseflow in a coastal watershed of Southeast China. PLoS One 9 (3), e91528. doi:10.1371/journal.pone.0091528

  • Hunsaker, C. T., & Levine, D. A. (1995). Hierarchical approaches to the study of water quality in rivers. Bioscience, 45(3), 193–203.

    Article  Google Scholar 

  • Ivajnsic, D., Kaligaric, M., & Ziberna, I. (2014). Geographically weighted regression of the urban heat island of a small city. Applied Geography, 53, 341–353.

    Article  Google Scholar 

  • Jensen, J. R. (2005). Introductory digital image processing: a remote sensing perspective. 3rd ed. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Kahya, O., Bayram, B., & Reis, S. (2010). Land cover classification with an expert system approach using Landsat ETM Imagery: a case study of Trabzon. Environmental Monitoring and Assessment, 160, 431–438.

    Article  Google Scholar 

  • Krivoruchko, K. (2011). Spatial statistical data analysis for GIS users. Redlands:ESRI Press.

    Google Scholar 

  • Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., Coomes, O. T., Dirzo, R., Fischer, G., Folke, C., George, P. S., Homewood, K., Imbernon, J., Leemans, R., Li, X., Moran, E. F., Mortimore, M., Ramakrishnan, P. S., Richards, J. F., Skanes, H., Steffen, W., Stone, G. D., Svedin, U., Veldkamp, T. A., Vogel, C., & Xu, J. (2001). The causes of land-use and land-cover change: moving beyond the myths. Global Environmental Change, 11, 261–269.

    Article  Google Scholar 

  • Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamic of land use and cover change in tropical and subtropical regions. Annual Review of Environment and Resources, 28, 205–241.

    Article  Google Scholar 

  • Lambin, E. F., Geist, H. J., & Rindfuss, R. R. (2006). Introduction: local processes with global impacts. In E. F. Lambin, & H. J. Geist (Eds.), Land-use and Land cover change: local processes and global impacts (pp. 1–8). New York: IGBP, Springer.

    Chapter  Google Scholar 

  • Line, D. E., White, N. M., Osmond, D. L., Jennings, G. D., & Mojonnier, C. B. (2002). Pollutant export from various land uses in the Upper Neuse River Basin. Water Environment Research, 74(1), 100–108.

    Article  CAS  Google Scholar 

  • Liu, Z., Li, Y., & Li, Z. (2009). Surface water quality and land use in Wisconsin, USA—a GIS approach. Journal of Integrative Environmental Sciences, 6(1), 69–89.

    Article  Google Scholar 

  • Long, H., Wu, X., Wang, W., & Dong, G. (2008). Analysis of urban–rural land-use change during 1995-2006 and its policy dimensional driving forces in Chongqing, China. Sensors, 8, 681–699.

    Article  Google Scholar 

  • Lu, D., & Weng, Q. (2004). Spectral mixture analysis of the urban landscape in Indianapolis with Landsat ETM+ imagery. Photogrammetric Engineering and Remote Sensing, 70(9), 1053–1062.

    Article  Google Scholar 

  • Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2002). Assessment of atmospheric correction methods for Landsat TM data applicable to Amazon Basin LBA Research. International Journal of Remote Sensing, 23(13), 2651–2671.

    Article  Google Scholar 

  • Martin, L. (1965). The physical geography of Wisconsin. Madison:The University of Wisconsin Press.

    Google Scholar 

  • Mather, A. S. (2006b). Driving forces. In H. J. Geist (Ed.), Our earth’s changing land: an encyclopedia of land-use and land-cover change, 1, (A-K) (pp. 179–185). West Port: Greenwood Press.

    Google Scholar 

  • May, C. W., Horner, R. R., Karr, J. R., Mar, B. W., & Welch, E. B. (1997). Effects of urbanization on small streams in the Puget Sound lowland ecoregion. Watershed Protection Techniques, 2(4), 483–494.

    Google Scholar 

  • Meyer, W. B., & Turner, B. L. (1992). Human population growth and global land-use/cover change. Annual Review of Ecology and Systematics, 23, 39–61.

    Article  Google Scholar 

  • Minnesota Population Center. (2011). National Historical Geographic Information System: version 2.0. Minneapolis, MN: University of Minnesota. Accessed June 24, 2013 http://www.nhgis.org

  • Nakaya, T., Charlton, M., Lewis, P., Brunsdon, C., Yao, J. & Fotheringham, S. (2014). Accessed July 6, 2014 https://geodacenter.asu.edu/drupal_files/gwr/GWR4manual.pdf

  • National Climate data Center. (2014). Land-based station data. Accessed January 11, 2014 http://www.ncdc.noaa.gov/

  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Srinivasan, R., & Williams, J. R. (2004). Soil and water assessment tool input/output file documentation.

  • NRCS [U.S. Department of Agriculture, Natural Resources Conservation Service]. (2013). Soil Survey Geographic (SSURGO) database, Wisconsin. Accessed July 2, 2013. http://glovis.usgs.gov

  • Park, S., Lee, H., Lee, S., Hwang, S., Byeon, M., Joo, G., Jeong, K., Kong, D., & Kim, M. (2011). Relationship between land use and multi-dimensional characteristics of streams and rivers at two different scales. International Journal of Limnology, 47, 107–116.

    Article  Google Scholar 

  • Pratt, B., & Chang, H. (2012). Effects of land cover, topography, and built structure on seasonal water quality at multiple spatial scales. Journal of Hazardous Materials, 209–210, 48–58.

    Article  Google Scholar 

  • Ren, W., Zhong, Y., Meligrana, J., Anderson, B., Watt, W., Chen, J., & Lueng, H. (2003). Urbanization, landuse, and water quality in Shanghai 1947–1996. Environment International, 29(5), 649–659.

    Article  CAS  Google Scholar 

  • Ridd, M. K. (1995). Exploring a V-I-S (Vegetation-Impervious Surface-Soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities. International Journal of Remote Sensing, 16(12), 2165–2185.

    Article  Google Scholar 

  • Roberts, D. A., Batista, G. T., Pereira, J. L. G., Waller, E. K., & Nelson, B. W. (1998). Change identification using multitemporal spectral mixture analysis: applications in Eastern Amazonia. In R. S. Lunetta, & C. D. Elvidge (Eds.), Remote sensing change detection: environmental monitoring methods and applications (pp. 137–161). Ann Arbor: Ann Arbor Science Publishers.

    Google Scholar 

  • Rothwell, J. J., Dise, N. B., Taylor, K. G., Allott, T. E. H., Scholefield, P., Davies, H., & Neal, C. (2010). A spatial and seasonal assessment of river water chemistry across North West England. Science of the Total Environment, 408(4), 841–855.

    Article  CAS  Google Scholar 

  • Rouholahnejad, E., Abbaspour, K. C., Vejdani, M., Srinivasan, R., Schulin, R., & Lehmann, A. (2012). A parallelization framework for calibration of hydrologic models. Environmental Modelling & Software, 31, 28–36.

    Article  Google Scholar 

  • Schilling, K. E., & Wolter, C. F. (2009). Modeling nitrate-nitrogen load reduction strategies for the Des Moines River, Iowa using SWAT. Environmental Management, 44, 671–682.

    Article  Google Scholar 

  • Seeboonruang, U. (2012). A statistical assessment of the impact of land uses on surface water quality indexes. Journal of Environmental Management, 101, 134–142.

    Article  CAS  Google Scholar 

  • Seto, K.C., Fragkias, M., Guneralp, B., & Reilly, M.K. (2011). A meta-analysis of global urban land expansion. PLoS One, 6 (8), e23777. doi:10.1371/journal.pone.0023777

  • Siakeu, J., Oguchi, T., Aoki, T., Esaki, Y., & Jarvie, H. (2004). Change in riverine suspended sediment concentration in central Japan in response to late 20th century human activities. Catena, 55(2), 231–254.

    Article  CAS  Google Scholar 

  • Somura, H., Takeda, I., Arnold, J. G., Mori, Y., Jeong, J., Kannan, N., & Hoffman, D. (2012). Impact of suspended sediment and nutrient loading from land uses against water quality in the Hii River Basin, Japan. Journal of Hydrology, 450-451, 25–35.

    Article  CAS  Google Scholar 

  • Soranno, P. A., Hubler, S. L., Carpenter, S. R., & Lathrop, R. C. (1996). Phosphorus loads to surface waters: a simple model to account for spatial pattern of land use. Ecological Applications, 6(3), 865–878.

    Article  Google Scholar 

  • Steffens, W., Sanderson, A., Tyson, P. D., Jager, J., Matson, P. A., Moore, B., Oldfield, F., Richardson, R. J., Schellnhuber, H. J., Turner, B. L., & Wason, R. J. (2004). . Global change and the earth system: a planet under pressure. Berlin:(The IGBP Series), Springer.

    Google Scholar 

  • Sun, Y., Guo, Q., Liu, J., & Wang, R. (2014). Scale effects of spatially varying relationships between urban landscape patterns and water quality. Environmental Management, 54(2), 272–287.

    Article  Google Scholar 

  • Tong, S., & Chen, W. (2002). Modeling the relationship between land use and surface water quality. Journal of Environmental Management, 66(4), 377–393.

    Article  Google Scholar 

  • Toutin, T. (2004). Review article: geometric processing of remote sensing images: models, algorithms and methods. International Journal of Remote Sensing, 25(10), 1893–1924.

    Article  Google Scholar 

  • Tu, J. (2011). Spatially varying relationships between land use and water quality across an urbanization gradient explored by geographically weighted regression. Applied Geography, 31, 376–392.

    Article  Google Scholar 

  • Tu, J. (2013). Spatial variations in the relationships between land use and water quality across an urbanization gradient in the watersheds of northern Georgia, USA. Environmental Management, 51, 1–17.

    Article  Google Scholar 

  • Tu, J., & Xia, Z. G. (2008). Examining spatially varying relationships between land use and water quality using geographically weighted regression I: model design and evaluation. Science of the Total Environment, 407, 358–378.

    Article  CAS  Google Scholar 

  • Tudesque, L., Tisseuil, C., & Lek, S. (2014). Scale-dependent effects of land cover on water physic-chemistry and diatom-based metrics in a major river system, the Adour-Garonne basin (South Western France). Science of the Total Environment, 466-467, 47–55.

    Article  CAS  Google Scholar 

  • U.S. Census Bureau. (2010). Profile of selected social characteristics: Eau Claire County, WI. Accessed June 12, 2013. http://factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml

  • USDA [United States Department of Agriculture]. (2013). National Agriculture Imagery Program Accessed June 14, 2013. http://nrcs.usda.gov

  • USGS [United States Geological Survey]. (2013a). Earth Resources Observation and Science Centre. Satellite image collections. Accessed January 10, 2013. http://glovis.usgs.gov

  • USGS [United States Geological Survey]. (2013b). National Elevation Dataset. Accessed April 18, 2013. http://ned.usgs.gov

  • USGS [United States Geological Survey]. (2013c). USGS Water Data for the Nation. Accessed April 18, 2013. http://waterdata.usgs.gov

  • Veldkamp, A., & Fresco, L. O. (1997). Reconstructing land use drivers and their spatial scale dependence for Costa Rica (1973 and 1984). Agricultural Systems, 55(1), 19–43.

    Article  Google Scholar 

  • Wang, X. (2001). Integrating water-quality management and land-use planning in a watershed context. Journal of Environmental Management, 61, 25–36.

    Article  CAS  Google Scholar 

  • Waschbusch, R. J., Selbig, W. R., & Bannerman, R. T. (1993). Sources of phosphorus in stormwater and street dirt from two urban residential basins in Madison, Wisconsin, 1994-1995. In National conference on tools for urban water resource management and protection. Proceedings February 7-10, 2000 Chicago, IL.

  • Wei, C., & Qi, F. (2012). On the estimation and testing of mixed geographically weighted regression models. Economic Modelling, 29(6), 2615–2620.

    Article  Google Scholar 

  • Wentz, E. A., Nelson, D., Rahman, A., Stefanov, W. L., & Roy, S. S. (2008). Expert system classification of urban land use/land cover for Delhi, India. International Journal of Remote Sensing, 29(15), 4405–4427.

    Article  Google Scholar 

  • West Central Wisconsin Regional Planning Commission (2010). West Central Wisconsin comprehensive plan: 2010-2030. WI:Eau Claire.

    Google Scholar 

  • Wilson, C., & Weng, Q. (2010). Assessing surface water quality and its relations with urban land cover changes in the Lake Calumet Area, Greater Chicago. Environmental Management, 45, 1096–1111.

    Article  Google Scholar 

  • Wilson, C. O., & Weng, Q. (2011). Simulating the impacts of future land use and climate changes on surface water quality in the Des Plaines River Watershed, Chicago Metropolitan Statistical Area, Illinois. Science of the Total Environment, 409(20), 4387–4405.

    Article  CAS  Google Scholar 

  • Winter, J. G., & Duthie, H. C. (2000). Export coefficient modeling to assess phosphorus loading in an urban watershed. Journal of the American Water Resources Association, 36(5), 1053–1061.

    Article  CAS  Google Scholar 

  • Wisconsin Department of Natural Resources. (2013a). Digital orthophoto data. Accessed June 10, 2013. http://dnr.wi.gov

  • Wisconsin Department of Natural Resources. (2013b). Surface Water Integrated Monitoring System (SWIMS). Accessed June 15, 2013. http://dnr.wi.gov/topic/surfacewater/swims

  • Yuan, Y., Hall, K., & Oldham, C. (2001). A preliminary model for predicting heavy metal contaminant loading from an urban catchment. The Science of the Total Environment, 266(1-3), 299–307.

    Article  CAS  Google Scholar 

  • Yusop, Z., Tan, L. W., Ujang, Z., Mohamed, M., & Nasir, K. A. (2005). Runoff quality and pollution loadings from a tropical urban catchment. Water Science and Technology, 52(9), 125–132.

    CAS  Google Scholar 

  • Zampella, R. A., Procopio, N. A., Lathrop, R. G., & Dow, C. L. (2007). Relationship of land-use/land-cover patterns and surface-water quality in the Mullica River Basin. Journal of the American Water Resources Association, 43(3), 594–604.

    Article  CAS  Google Scholar 

  • Zhang, P., Liu, Y., Pan, Y., & Yu, Z. (2013). Land use pattern optimization based on CLUE-S and SWAT models for agricultural non-point source pollution control. Mathematical and Computer Modelling, 58, 588–595.

    Article  Google Scholar 

  • Zhao, J. (2008). Landscape pattern change and its environmental response across multiple spatial scales in tidal plain. East China Normal University, China 107 pp

Download references

Acknowledgments

This research is partly sponsored by the Office of Research and Sponsored Programs, University of Wisconsin-Eau Claire and through the Simpson Fund, Department of Geography and Anthropology, University of Wisconsin-Eau Claire. The author wishes to thank several agencies including but not limited to the Wisconsin Department of Natural Resources, the West Central Wisconsin Regional Planning Commission, and the GWR 4 Development Team for data, software, and other supporting materials. Finally, the author would like to express gratitude to two anonymous individuals for providing pivotal suggestions that helped improve the manuscript and also all those who gave positive feedback on the research during several conference presentations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril O. Wilson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, C.O. Land use/land cover water quality nexus: quantifying anthropogenic influences on surface water quality. Environ Monit Assess 187, 424 (2015). https://doi.org/10.1007/s10661-015-4666-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4666-4

Keywords

Navigation