Skip to main content
Log in

Antioxidant activity of humic substances via bioluminescent monitoring in vitro

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This work considers antioxidant properties of natural detoxifying agents—humic substances (HS) in solutions of model inorganic and organic compounds of oxidative nature—complex salt K3[Fe(СN)6] and 1,4-benzoquinone. Bioluminescent system of coupled enzymatic reactions catalyzed by NAD(P)H:FMN-oxidoreductase and bacterial luciferase was used as a bioassay in vitro to monitor toxicity of the oxidizer solutions. Toxicities of general and oxidative types were evaluated using bioluminescent kinetic parameters—bioluminescence intensity and induction period, respectively. Antioxidant activity of HS was attributed to their ability to decrease both general and oxidative toxicities; the HS antioxidant efficiency was characterized with detoxification coefficients D GT and D OxT, respectively. Dependencies of D GT and D OxT on HS concentration and time of preliminary incubation of the oxidizers with HS were demonstrated. The optimal conditions for detoxification of the oxidizers were >20-min incubation time and 0.5 × 10−4 to 2 × 10−4 M of HS concentration. The present study promotes application of the enzymatic luminescent bioassay to monitor toxicity of pollutants of oxidative nature in environmental and waste waters in remediation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HS:

Humic substances

NADH:

Nicotinamide adenine dinucleotide disodium salt reduced

FMN:

Flavin mononucleotide

References

  • Agrawal, A., Kumari, S., & Sahu, K. K. (2009). Iron and copper recovery/removal from industrial wastes: a review. Industrial and Engineering Chemistry Research, 48, 6145–6161.

    Article  CAS  Google Scholar 

  • Bulich, A. A., & Isenberg, D. L. (1981). Use of the luminescent bacterial system for rapid assessment of aquatic toxicity. ISA Transactions, 20, 29–33.

    CAS  Google Scholar 

  • Deryabin, D. G., & Karimov, I. F. (2010). Characteristics of the response of natural and recombinant luminescent microorganisms in the presence of Fe(2+) ions. Applied Biochemistry and Microbiology, 46, 28–32.

    Article  CAS  Google Scholar 

  • Drosos, M., Jerzykiewicz, M., Louloudi, M., & Deligiannakis, Y. (2011). Progress towards synthetic modelling of humic acid: peering into the physicochemical polymerization mechanism. Colloids and Surfaces A, 389, 254–265.

    Article  CAS  Google Scholar 

  • Esimbekova, E. N., Kratasyuk, V. A., & Torgashina, I. G. (2007). Disk-shaped immobilized multicomponent reagent for bioluminescent analyses: correlation between activity and composition. Enzyme and Microbial Technology, 40, 343–346.

    Article  CAS  Google Scholar 

  • Esimbekova, E. N., Kondik, A. M., & Kratasyuk, V. A. (2013). Bioluminescent enzymatic rapid assay of water integral toxicity. Environmental Monitoring and Assessment, 185, 5909–5916.

    Article  CAS  Google Scholar 

  • Esimbekova, E., Kratasyuk, V., & Shimomura, O. (2014). Application of enzyme bioluminescence in ecology. Advances in Biochemical Engineering/Biotechnology, 144, 67–109. doi:10.1007/978-3-662-43385-0_3.

    Article  Google Scholar 

  • Fedorova, E., Kudryasheva, N., Kuznetsov, A., Mogil’naya, O., & Stom, D. (2007). Bioluminescent monitoring of detoxification processes: activity of humic substances in quinone solutions. Journal of Photochemistry and Photobiology B: Biology, 88, 131–136.

    Article  CAS  Google Scholar 

  • Gerasimova, M. A., & Kudryasheva, N. S. (2002). Effects of potassium halides on bacterial bioluminescence. Journal of Photochemistry and Photobiology B: Biology, 66, 218–222.

    Article  CAS  Google Scholar 

  • Girotti, S., Ferri, E. N., Fumo, M. G., & Maiolini, E. (2008). Monitoring of environmental pollutants by bioluminescent bacteria. Analytica Chimica Acta, 608, 2–29.

    Article  CAS  Google Scholar 

  • Guin, P. S., Das, S., Mandal, P. C. (2011) Electrochemical reduction of quinones in different media: a review. International Journal of Electrochemistry 2011. Article ID 816202, 22 pp.

  • Ivask, A., Rolova, T., & Kahru, A. (2009). A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. BMC Biotechnology, 9, 41. doi:10.1186/1472-6750-9-41.

    Article  Google Scholar 

  • Kamnev, A. A., Dykman, R. L., Kovács, K., Pankratov, A. N., Tugarova, A. V., Homonnay, Z., & Kuzmann, E. (2014). Redox interactions between structurally different alkylresorcinols and iron(III) in aqueous media: frozen-solution 57Fe Mössbauer spectroscopic studies, redox kinetics and quantum chemical evaluation of the alkylresorcinol reactivities. Structural Chemistry, 25, 649–657.

    Article  CAS  Google Scholar 

  • Katafias, A., Impert, O., & Kita, P. (2008). Hydrogen peroxide as a reductant of hexacyanoferrate (III) in alkaline solutions: kinetic studies. Transition Metal Chemistry, 33, 1041–1046.

    Article  CAS  Google Scholar 

  • Kirillova, T. N., & Kudryasheva, N. S. (2007). Effect of heavy atom in bioluminescent reactions. Analytical and Bioanalytical Chemistry, 387, 2009–2016.

    Article  CAS  Google Scholar 

  • Kirillova, T. N., Gerasimova, M. A., Nemtseva, E. V., & Kudryasheva, N. S. (2011). Effect of halogenated fluorescent compounds on bioluminescent reactions. Analytical and Bioanalytical Chemistry, 400, 343–351.

    Article  CAS  Google Scholar 

  • Kratasyuk, V. A. (1990). Principle of luciferase biotesting. In B. Jezowska-Trzebiatowska (Ed.), Biolоgical luminescence (pp. 550–558). Singapore: World Scientific.

    Google Scholar 

  • Kudryasheva, N. (2006). Bioluminescence and exogenous compounds: physicochemical basis for bioluminescence assay. Journal of Photochemistry and Photobiology B, 1, 77–86.

    Article  Google Scholar 

  • Kudryasheva, N. S., & Tarasova, A. S. (2015). Pollutant toxicity and detoxification by humic substances: mechanisms and quantitative assessment via luminescent biomonitoring. Environmental Science and Pollution Research, 22, 155–167. doi:10.1007/s11356-014-3459-6.

    Article  CAS  Google Scholar 

  • Kudryasheva, N. S., Kratasyuk, V. A., Esimbekova, E. N., Vetrova, E. V., Kudinova, I. Y., & Nemtseva, E. V. (1998). Development of the bioluminescent bioindicators for analyses of pollutions. Field Analytical Chemistry and Technology, 5, 277–280.

    Article  Google Scholar 

  • Levinsky, B. (2000). All about humates. Irkutsk: Korf-Poligraf.

    Google Scholar 

  • Ma, X.Y., Wang, X.C., Ngo, H.H., Guo, W., Wu, M.N., Wang, N. (2014). Bioassay based luminescent bacteria: interferences, improvements, and applications. Science of the Total Environment 468–469, 1–11.

  • Matthiessen, A. (1996). Kinetic aspects of the reduction of mercury ions by humic substances. Fresenius Journal of Analytical Chemistry, 354, 747–749.

    CAS  Google Scholar 

  • McFeters, G. A., Bond, P. J., Olson, S. B., & Tchan, Y. T. (1983). A comparison of microbial bioassays for the detection of aquatic toxicants. Water Research, 17, 1757–1762.

    Article  CAS  Google Scholar 

  • Nebbioso, A., & Piccolo, A. (2011). Basis of a humeomics science: chemical fractionation and molecular characterization of humic biosuprastructures. Biomacromolecules, 12, 1187–1199.

    Article  CAS  Google Scholar 

  • Nemtseva, E. V., & Kudryasheva, N. S. (2007). The mechanism of electronic excitation in bacterial bioluminescent reaction. Uspekhi Khimii, 76, 101–102. Russian Chemical Reviews 76, 91–100.

  • Orlov, D. S. (1997). Humic substances in the biosphere. Soros Education Journal, 2, 56–63 (in Russian).

    Google Scholar 

  • Park, J.-S., Brown, M. T., & Han, T. (2012). Phenol toxicity to the aquatic macrophyte Lemna paucicostata. Aquatic Toxicology, 106–107, 182–188.

    Article  Google Scholar 

  • Perminova, I., Grechishcheva, N., Kovalevskii, D., Kudryavtsev, A., Petrosyan, V., & Matorin, D. (2001). Quantification and prediction of the detoxifying properties of humic substances related to their chemical binding to polycyclic aromatic hydrocarbons. Environmental Science and Technology, 35, 3841–3848.

    Article  CAS  Google Scholar 

  • Perminova, I., Kovalenko, A., Schmitt-Kopplin, P., Hatfield, K., Hertkorn, N., Belyaeva, E., & Petrosyan, V. (2005). Design of quinonoid-enriched humic materials with enhanced redox properties. Environmental Science and Technology, 39, 8518–8524.

    Article  CAS  Google Scholar 

  • Piccolo, A., Conte, P., & Cozzolino, A. (2001). Chromatographic and spectrophotometric properties of dissolved humic substances compared with macromolecular polymers. Soil Science, 166, 174–185.

    Article  CAS  Google Scholar 

  • Pracht, J., Boenigk, J., Isenbeck-Schröter, M., Keppler, F., & Schöler, H. F. (2001). Abiotic Fe(III) induced mineralization of phenolic substances. Chemosphere, 44, 613–619.

    Article  CAS  Google Scholar 

  • Ren, S. (2003). Phenol mechanism of toxic action classification and prediction: a decision tree approach. Toxicology Letters, 144, 313–323.

    Article  CAS  Google Scholar 

  • Richard, C., Guyot, G., Trubetskaya, O., Trubetskoj, O., Grigatti, M., & Cavani, L. (2009). Fluorescence analysis of humic-like substances extracted from composts: influence of composting time and fractionation. Environmental Chemistry Letters, 7, 61–65.

    Article  CAS  Google Scholar 

  • Rizzo, L. (2011). Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Research, 45, 4311–4340.

    Article  CAS  Google Scholar 

  • Roda, A., Pasini, P., Mirasoni, M., Michchelini, E., & Guardigli, M. (2004). Biotechnological application of bioluminescence and chemiluminescence. Trends in Biotechnology, 22, 295–303.

    Article  CAS  Google Scholar 

  • Roda, A., Guardigli, M., Michelini, E., & Mirasoni, M. (2009). Bioluminescence in analytical chemistry and in vivo imaging. TrAC Trends in Analytical Chemistry, 28, 307–322.

    Article  CAS  Google Scholar 

  • Rozhko, T. V., Kudryasheva, N. S., Kuznetsov, A. M., Vydryakova, G. A., Bondareva, L. G., & Bolsunovsky, A. Y. (2007). Effect of low-level α-radiation on bioluminescent assay systems of various complexity. Photochemical and Photobiological Sciences, 6, 67–70.

    Article  CAS  Google Scholar 

  • Selivanova, M. A., Mogilnaya, O. A., Badun, G. A., Vydryakova, G. A., Kuznetsov, A. M., & Kudryasheva, N. S. (2013). Effect of tritium on luminous marine bacteria and enzyme reactions. Journal of Environmental Radioactivity, 120, 19–25.

    Article  CAS  Google Scholar 

  • Shourian, M., Noghabi, K. A., Zahiri, H. S., Bagheri, T., Karballaei, G., Mollaei, M., Rad, I., Ahadi, S., Raheb, J., & Abbasi, H. (2009). Efficient phenol degradation by a newly characterized Pseudomonas sp. SA01 isolated from pharmaceutical wastewaters. Desalination, 246, 577–594.

    Article  CAS  Google Scholar 

  • Skogerboe, R. K., & Wilson, S. A. (1981). Reduction of ionic species by fulvic acid. Analytical Chemistry, 53, 228–232.

    Article  CAS  Google Scholar 

  • Stasiuk, M., & Kozubek, A. (2010). Biological activity of phenolic lipids. Cellular and Molecular Life Sciences, 67, 841–860.

    Article  CAS  Google Scholar 

  • Tanford, C. (1961). Physical chemistry of macromolecules. New York: Wiley.

    Google Scholar 

  • Tarasova, A. S., Stom, D. I., & Kudryasheva, N. S. (2011). Effect of humic substances on toxicity of inorganic oxidizer bioluminescent monitoring. Environmental Toxicology and Chemistry, 30, 1013–1017.

    Article  CAS  Google Scholar 

  • Tarasova, A. S., Kislan, S. L., Fedorova, E. S., Kuznetsov, A. M., Mogilnaya, O. A., Stom, D. I., & Kudryasheva, N. S. (2012). Bioluminescence as a tool for studying detoxification processes in metal salt solutions involving humic substances. Journal of Photochemistry and Photobiology B: Biology, 117, 164–170.

    Article  CAS  Google Scholar 

  • Thakur, M. S., & Ragavan, K. V. (2013). Biosensors in food processing. Journal of Food Science and Technology, 50, 625–641.

    Article  CAS  Google Scholar 

  • Thomas, D. J. L., Tyrrel, S. F., Smith, R., & Farrow, S. (2009). Bioassays for the evaluation of landfill leachate toxicity. Journal of Toxicology and Environmental Health, 12, 83–105.

    Article  Google Scholar 

  • Trubetskoj, O. A., Trubetskaya, O. E., & Richard, C. (2009). Photochemical activity and fluorescence of electrophoretic fractions of aquatic humic matter. Water Resources, 36, 518–524.

    Article  CAS  Google Scholar 

  • Vanýsek, P. (1983) Standard electrochemical potentials. In Handbook of chemistry and physics, 64, (pp. (D-156)-(D-163)). FL, USA: CRC Press, Boca Raton.

  • Vetrova, E. V., Kudryasheva, N. S., & Kratasyuk, V. A. (2007). Redox compounds influence on the NAD(P)H:FMN–oxidoreductase–luciferase bioluminescent system. Photochemical and Photobiological Sciences, 6, 35–40.

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhou, J., Lin, L., & Lin, Z. (2008). Determination of electrochemical electron-transfer reaction standard rate constants at nanoelectrodes: standard rate constants for ferrocenylmethyltrimethylammonium (III)/(II) and hexacyanoferrate (III)/(II). Electroanalysis, 20, 1490–1494.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research, Grant No. 15-03-06786a, the Program “Molecular and Cellular Biology” of the Russian Academy of Sciences, project VI 57.1.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Kudryasheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasova, A.S., Stom, D.I. & Kudryasheva, N.S. Antioxidant activity of humic substances via bioluminescent monitoring in vitro. Environ Monit Assess 187, 89 (2015). https://doi.org/10.1007/s10661-015-4304-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4304-1

Keywords

Navigation