Skip to main content
Log in

Synthesis of magnetic carbon nanotube and photocatalytic dye degradation ability

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this paper, magnetic carbon nanotube (M-CNT) was synthesized. The photocatalytic dye degradation ability of M-CNT in the presence of hydrogen peroxide (H2O2) from colored wastewater was studied. Manganese ferrite (MnFe2O4) was synthesized in the presence of multiwalled carbon nanotube. Direct Red 23 (DR23), Direct Red 31 (DR31), and Direct Red 81 (DR81) were used as anionic dyes. The characteristics of M-CNT were investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). The photocatalytic dye degradation using M-CNT was studied by UV–vis spectrophotometer and ion chromatography (IC). The effects of M-CNT dosage, initial dye concentration, and salt on the degradation of dye were evaluated. Formate, acetate, and oxalate anions were detected as dominant aliphatic intermediates. Inorganic anions (nitrate and sulfate anions) were detected and quantified as the mineralization products of dyes during the degradation process. The results indicated that the M-CNT could be used as a magnetic catalyst to degrade anionic dyes from colored wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ambashta, R. D., & Sillanpää, M. (2010). Water purification using magnetic assistance: a review. Journal of Hazardous Materials, 180, 38.

    Article  CAS  Google Scholar 

  • Arsalan-Alaton, I. (2003). A review of the effects of dye-assisting chemicals on advanced oxidation of reactive dyes in wastewater. Coloration Technology, 119, 345–353.

    Article  Google Scholar 

  • Baby, T. T., & Ramaprabhu, S. (2010). SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor. Talanta, 80, 2016–2022.

    Article  CAS  Google Scholar 

  • Brabers, V. A. M. (1969). Infrared spectra of cubic and tetragonal manganese ferrites. Physica Status Solidi, 33, 563–572.

    Article  CAS  Google Scholar 

  • Bulut, Y., & Aydin, H. (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194, 259–267.

    Article  CAS  Google Scholar 

  • Demirbas, E., Kobya, M., Oncel, S., & Sencan, S. (2002). Removal of Ni(II) from aqueous solution by adsorption onto hazelnut shell activated carbon: equilibrium studies. Bioresource Technology, 84, 291–293.

    Article  CAS  Google Scholar 

  • Duran, P., Tartaj, J., Rubio, F., Moure, C., & Pena, O. (2005). Synthesis and sintering behavior of spinel-type CoxNiMn2-xO4(0.2 ≤ x ≤ 1.2) prepared by the ethylene glycol–metal nitrate polymerized complex process. Ceramics International, 31, 599–610.

    Article  CAS  Google Scholar 

  • Fu, Y., Chen, H., Sun, X., & Wang, X. (2012). Combination of cobalt ferrite and graphene: high-performance and recyclable visible-light photocatalysis. Applied Catalysis B: Environmental, 111–112, 280–287.

    Article  Google Scholar 

  • Georgi, A., & Kopinke, F. D. (2005). Interaction of adsorption and catalytic reactions in water decontamination processes: part I. Oxidation of organic contaminants with hydrogen peroxide catalyzed by activated carbon. Applied Catalysis B: Environmental, 58, 9–18.

    Article  CAS  Google Scholar 

  • Hafner, S., & Krist, Z. (1961). Order/disorder and I.R-absorption. IV. The absorption of some metal oxides with spinel structure (Ordnung/unordnung und ultrarotabsorption IV, die absorption einiger metalloxyde mit spinellstruktur). Scripta Materialia, 115, 331–358.

    CAS  Google Scholar 

  • Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., & Hermann, J. M. (2001). Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental, 31, 145–157.

    Article  CAS  Google Scholar 

  • Huang, H. H., Lu, M. C., Chen, J. N., & Lee, C. T. (2003). Catalytic decomposition of hydrogen peroxide and 4-chlorophenol in the presence of modified activated carbons. Chemosphere, 51, 935–943.

    Article  CAS  Google Scholar 

  • Karousis, N., Tagmatarchis, N., & Tasis, D. (2010). Current progress on the chemical modification of carbon nanotubes. Chemical Reviews, 110, 5366–5397.

    Article  CAS  Google Scholar 

  • Kharisov, B. I., Kharissova, O. V., Gutierrez, H. L., & Mendez, U. O. (2009). Resent advances on the soluble carbon nanotubes. Industrial and Engineering Chemistry Research, 48, 572–590.

    Article  CAS  Google Scholar 

  • Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations—a review. Applied Catalysis B: Environmental, 49, 1–14.

    Article  CAS  Google Scholar 

  • Kurniawan, T. A., & Lo, W. H. (2009). Removal of refractory compounds from stabilized landfill leachate using an integrated H2O2 oxidation and granular activated carbon (GAC) adsorption treatment. Water Research, 43, 4079–4091.

    Article  CAS  Google Scholar 

  • Luo, Y. B., Yu, Q. W., Yuan, B. F., & Feng, Y. Q. (2012). Fast microextraction of phthalate acid esters from beverage, environmental water and perfume samples by magnetic multi-walled carbon nanotubes. Talanta, 90, 123–131.

    Article  CAS  Google Scholar 

  • Maensiri, S., Masingboon, C., Boonchom, B., & Eraphin, S. (2007). A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scripta Materialia, 56, 797–800.

    Article  CAS  Google Scholar 

  • Mahmoodi, N. M. (2011). Equilibrium, kinetic and thermodynamic of dye removal using alginate from binary system. Journal of Chemical and Engineering Data, 56, 2802–2811.

    Article  CAS  Google Scholar 

  • Mahmoodi, N. M. (2013a). Magnetic ferrite nanoparticle—alginate composite: synthesis, characterization and binary system dye removal. Journal of the Taiwan Institute of Chemical Engineers, 44, 321–329.

    Article  Google Scholar 

  • Mahmoodi, N. M. (2013b). Photocatalytic ozonation of dyes using multiwalled carbon nanotube. Journal of Molecular Catalysis A: Chemical, 366, 254–260.

    Article  CAS  Google Scholar 

  • Mouallem-Bahout, M., Bertrand, S., & Pena, O. (2005). Synthesis and characterization of Zn1-xNixFe2O4 spinels prepared by a citrate precursor. Journal of Solid State Chemistry, 178, 1080–1086.

    Article  CAS  Google Scholar 

  • Ngomsik, A. F., Bee, A., Draye, M., Cote, G., & Cabuil, V. (2005). Magnetic nano- and microparticles for metal removal and environmental applications: a review. Comptes Rendus Chimie, 8, 963.

    Article  CAS  Google Scholar 

  • Ozcan, A., & Ozcan, A. S. (2005). Adsorption of Acid Red 57 from aqueous solutions onto surfactant-modified sepiolite. Journal of Hazardous Materials, 125, 252–259.

    Article  Google Scholar 

  • Pavia, D. L., Lampman, G. M., & Kaiz, G. S. (1987). Introduction to spectroscopy: a guide for students of organic chemistry. New York: W.B Saunders Company.

    Google Scholar 

  • Sun, J., Xu, R., Zhang, Y., Ma, M., & Gu, N. (2007). Magnetic nanoparticles separation based on nanostructures. Journal of Magnetism and Magnetic Materials, 312, 354.

    Article  CAS  Google Scholar 

  • Tanaka, K., Robledo, S. M., Hisanaga, T., Ali, R., Ramli, Z., & Bakar, W. A. (1999). Photocatalytic degradation of 3,4-xylyl N-methylcarbamate (MPMC) and other carbamate pesticides in aqueous TiO2 suspensions. Journal of Molecular Catalysis A: Chemical, 144, 425–430.

    Article  CAS  Google Scholar 

  • Tasis, D., Tagmatarchis, N., Bianco, A., & Prato, M. (2006). Chemistry of carbon nanotubes. Chemical Reviews, 106, 1105–1136.

    Article  CAS  Google Scholar 

  • Thurm, S., & Odenbach, S. (2002). Magnetic separation of ferrofluids. Journal of Magnetism and Magnetic Materials, 252, 247.

    Article  CAS  Google Scholar 

  • Waldron, R. D. (1955). Infrared spectra of ferrites. Physical Review, 99, 1727–1735.

    Article  CAS  Google Scholar 

  • Xiao, H. M., Liu, X. M., & Fu, S. Y. (2006). Synthesis, magnetic and microwave absorbing properties of core-shell structured MnFe2O4/TiO2 nanocomposites. Composites Science and Technology, 66, 2003–2008.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niyaz Mohammad Mahmoodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoodi, N.M. Synthesis of magnetic carbon nanotube and photocatalytic dye degradation ability. Environ Monit Assess 186, 5595–5604 (2014). https://doi.org/10.1007/s10661-014-3805-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3805-7

Keywords

Navigation