Skip to main content

Advertisement

Log in

The potential effects of climate change on the distribution and productivity of Cunninghamia lanceolata in China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Climate changes may have immediate implications for forest productivity and may produce dramatic shifts in tree species distributions in the future. Quantifying these implications is significant for both scientists and managers. Cunninghamia lanceolata is an important coniferous timber species due to its fast growth and wide distribution in China. This paper proposes a methodology aiming at enhancing the distribution and productivity of C. lanceolata against a background of climate change. First, we simulated the potential distributions and establishment probabilities of C. lanceolata based on a species distribution model. Second, a process-based model, the PnET-II model, was calibrated and its parameterization of water balance improved. Finally, the improved PnET-II model was used to simulate the net primary productivity (NPP) of C. lanceolata. The simulated NPP and potential distribution were combined to produce an integrated indicator, the estimated total NPP, which serves to comprehensively characterize the productivity of the forest under climate change. The results of the analysis showed that (1) the distribution of C. lanceolata will increase in central China, but the mean probability of establishment will decrease in the 2050s; (2) the PnET-II model was improved, calibrated, and successfully validated for the simulation of the NPP of C. lanceolata in China; and (3) all scenarios predicted a reduction in total NPP in the 2050s, with a markedly lower reduction under the a2 scenario than under the b2 scenario. The changes in NPP suggested that forest productivity will show a large decrease in southern China and a mild increase in central China. All of these findings could improve our understanding of the impact of climate change on forest ecosystem structure and function and could provide a basis for policy-makers to apply adaptive measures and overcome the unfavorable influences of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aber, J. D., & Federer, C. A. (1992). A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia, 92(4), 463–474.

    Article  Google Scholar 

  • Aber, J. D., Ollinger, S. V., Federer, C. A., Reich, P. B., Goulden, M. L., Kicklighter, D. W., et al. (1995). Predicting the effects of climate change on water yield and forest production in the northeastern United States. Climate Research, 5, 207–222.

    Article  Google Scholar 

  • Aber, J. D., Reich, P. B., & Goulden, M. L. (1996). Extrapolating leaf CO2 exchange to the canopy: A generalized model of forest photosynthesis compared with measurements by eddy correlation. Oecologia, 106(2), 257–265.

    Article  Google Scholar 

  • Aber, J. D., Ollinger, S. V., & Driscoll, C. T. (1997). Modeling nitrogen saturation in forest ecosystems in response to land use and atmospheric deposition. Ecological Modelling, 101(1), 61–78.

    Article  Google Scholar 

  • Austin, M. (2007). Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling, 200(1–2), 1–19.

    Article  Google Scholar 

  • Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobell, D. B., Delire, C., et al. (2007). Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences of the United States of America, 104(16), 6550–6555.

    Article  CAS  Google Scholar 

  • Bellassen, V., le Maire, G., Guin, O., Dhôte, J. F., Ciais, P., & Viovy, N. (2011). Modelling forest management within a global vegetation model—Part 2: Model validation from a tree to a continental scale. Ecological Modelling, 222(1), 57–75.

    Article  Google Scholar 

  • Coops, N. C., & Waring, R. H. (2011). Estimating the vulnerability of fifteen tree species under changing climate in Northwest North America. Ecological Modelling, 222(13), 2119–2129.

    Article  Google Scholar 

  • Coops, N. C., Waring, R. H., & Schroeder, T. A. (2009). Combining a generic process-based productivity model and a statistical classification method to predict the presence and absence of tree species in the Pacific Northwest, U.S.A. Ecological Modelling, 220(15), 1787–1796.

    Article  Google Scholar 

  • Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151.

    Article  Google Scholar 

  • Evangelista, P. H., Kumar, S., Stohlgren, T. J., & Young, N. E. (2011). Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US. Forest Ecology and Management, 262(3), 307–316.

    Article  Google Scholar 

  • Fang, J., Liu, G., & Xu, S. (1996). Biomass and net production of forest vegetation in China. Acta Ecologica Sinica, 16(5), 497–508.

    Google Scholar 

  • Feng, Z. W., Chen, C. Y., Li, C. H., Xu, G. H., & Zhou, C. L. (1982). Relations between the growth-development and environment of Cunninghamia lanceolata plantation in Huitong, Hunan province. Journal of Nanjing Technological College of Forest Products, (3), 19–38.

  • Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., et al. (2006). Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. Journal of Climate, 19(14), 3337–3353.

    Article  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

    Article  Google Scholar 

  • IPCC, Pachauri, R. K., & Reisinger, A. (2008). Climate change 2007: Synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report. Geneva: IPCC.

  • Jiang, H., Apps, M. J., Zhang, Y., Peng, C., & Woodard, P. M. (1999). Modelling the spatial pattern of net primary productivity in Chinese forests. Ecological Modelling, 122(3), 275–288.

    Article  Google Scholar 

  • Landsberg, J. J., & Waring, R. H. (1997). A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management, 95(3), 209–228.

    Article  Google Scholar 

  • Law, B. E., Waring, R. H., Anthoni, P. M., & Aber, J. D. (2000). Measurements of gross and net ecosystem productivity and water vapour exchange of a Pinus ponderosa ecosystem, and an evaluation of two generalized models. Global Change Biology, 6(2), 155–168.

    Article  Google Scholar 

  • Levis, S. (2010). Modeling vegetation and land use in models of the Earth System. Wiley Interdisciplinary Reviews: Climate Change, 1(6), 840–856.

    Google Scholar 

  • Macias Fauria, M., Michaletz, S. T., & Johnson, E. A. (2011). Predicting climate change effects on wildfires requires linking processes across scales. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 99–112.

    Google Scholar 

  • Metzger, M., Schröter, D., Leemans, R., & Cramer, W. (2008). A spatially explicit and quantitative vulnerability assessment of ecosystem service change in Europe. Regional Environmental Change, 8(3), 91–107.

    Article  Google Scholar 

  • Nakiccenovic, N., Davidson, O., Davis, G., Grubler, A., Kram, T., Lebre La Rovere, E., et al. (2000). Special report on emissions scenarios: A special report of working group III of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Nayak, R. K., Patel, N. R., & Dadhwal, V. K. (2010). Estimation and analysis of terrestrial net primary productivity over India by remote-sensing-driven terrestrial biosphere model. Environmental Monitoring and Assessment, 170(1–4), 195–213.

    Article  Google Scholar 

  • Niu, D., Wang, S., & Ouyang, Z. (2009). Comparisons of carbon storages in Cunninghamia lanceolata and Michelia macclurei plantations during a 22-year period in southern China. Journal of Environmental Sciences, 21(6), 801–805.

    Article  CAS  Google Scholar 

  • Ollinger, S. V., Aber, J. D., Reich, P. B., & Freuder, R. J. (2002). Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forests. Global Change Biology, 8(6), 545–562.

    Article  Google Scholar 

  • Ollinger, S. V., Richardson, A. D., Martin, M. E., Hollinger, D. Y., Frolking, S. E., Reich, P. B., et al. (2008). Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks. Proceedings of the National Academy of Sciences of the United States of America, 105(49), 19336–19341.

    Article  CAS  Google Scholar 

  • Peng, C., Zhou, X., Zhao, S., Wang, X., Zhu, B., Piao, S., et al. (2009). Quantifying the response of forest carbon balance to future climate change in Northeastern China: Model validation and prediction. Global and Planetary Change, 66(3–4), 179–194.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259.

    Article  Google Scholar 

  • Purves, D., & Pacala, S. (2008). Predictive models of forest dynamics. Science, 320(5882), 1452–1453.

    Article  CAS  Google Scholar 

  • Running, S. W., & Coughlan, J. C. (1988). A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecological Modelling, 42(2), 125–154.

    Article  CAS  Google Scholar 

  • Running, S. W., & Gower, S. T. (1991). FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiology, 9(1–2), 147–160.

    Article  CAS  Google Scholar 

  • Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., & Hashimoto, H. (2004). A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54(6), 547–560.

    Article  Google Scholar 

  • Scheller, R. M., & Mladenoff, D. J. (2004). A forest growth and biomass module for a landscape simulation model, LANDIS: Design, validation, and application. Ecological Modelling, 180(1), 211–229.

    Article  Google Scholar 

  • Scheller, R. M., Mladenoff, D. J., Crow, T. R., & Sickley, T. A. (2005). Simulating the effects of fire reintroduction versus continued fire absence on forest composition and landscape structure in the boundary waters canoe area, Northern Minnesota, USA. Ecosystems, 8(4), 396–411.

    Article  Google Scholar 

  • Scheller, R. M., Domingo, J. B., Sturtevant, B. R., Williams, J. S., Rudy, A., Gustafson, E. J., et al. (2007). Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution. Ecological Modelling, 201(3–4), 409–419.

    Article  Google Scholar 

  • Schröter, D., Cramer, W., Leemans, R., Prentice, I. C., Araújo, M. B., Arnell, N. W., et al. (2005). Ecosystem service supply and vulnerability to global change in Europe. Science, 310(5752), 1333–1337.

    Article  Google Scholar 

  • Sheng, W., Ren, S., Yu, G., Gang, H., Jiang, C., & Zhang, M. (2011). Patterns and driving factors of WUE and NUE in natural forest ecosystems along the North–South Transect of Eastern China. Journal of Geographical Sciences, 21(4), 651–665.

    Article  Google Scholar 

  • Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., et al. (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9(2), 161–185.

    Article  Google Scholar 

  • Tatarinov, F. A., Cienciala, E., Vopenka, P., & Avilov, V. (2011). Effect of climate change and nitrogen deposition on central-European forests: Regional-scale simulation for South Bohemia. Forest Ecology and Management, 262(10), 1919–1927.

    Article  Google Scholar 

  • Tian, D. L. (2011). Dataset of Chinese ecosystem located observation and research (vol. Huitong ecological station for Chinese fir plantation, forest ecosystem). Beijing: China Agriculture Press.

    Google Scholar 

  • Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., & Steininger, M. (2003). Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution, 18(6), 306–314.

    Article  Google Scholar 

  • Wang, S., & Liu, Z. (2010). NPP spatial distribution of forest ecosystem based on SPA model. Science & Technology Review, 28(1), 82–89.

    CAS  Google Scholar 

  • Webb, R. S., Rosenzweig, C. E., & Levine, E. R. (1993). Specifying land surface characteristics in general circulation models: Soil profile data set and derived water holding capacities. Global Biogeochemical Cycles, 7(1), 97–108.

    Article  Google Scholar 

  • Wu, Z. (1984). Chinese fir. Beijing: China Forestry Publish House.

    Google Scholar 

  • Xu, C., Gertner, G. Z., & Scheller, R. M. (2009). Uncertainties in the response of a forest landscape to global climatic change. Global Change Biology, 15(1), 116–131.

    Article  CAS  Google Scholar 

  • Xu, C., Li, Y., Hu, J., Yang, X., Sheng, S., & Liu, M. (2012). Evaluating the difference between the normalized difference vegetation index and net primary productivity as the indicators of vegetation vigor assessment at landscape scale. Environmental Monitoring and Assessment, 184(3), 1275–1286.

    Article  Google Scholar 

  • Yu, D., Zhu, W., & Pan, Y. (2008). The role of atmospheric circulation system playing in coupling relationship between spring NPP and precipitation in East Asia area. Environmental Monitoring and Assessment, 145(1–3), 135–143.

    Google Scholar 

  • Zeng, X., Cai, X. A., Zhao, P., Rao, X., Zou, B., Zhou, L., et al. (2008). Biomass and net primary productivity of three plantation communities in hilly land of lower subtropical China. Journal of Beijing Forestry University, 30(6), 148–152.

    Google Scholar 

  • Zhang, X. S. (2008). Vegetation map of the People’s Republic of China (1:1000000). Beijing: Geoscience Press.

    Google Scholar 

  • Zhao, M., & Running, S. W. (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994), 940–943.

    Article  CAS  Google Scholar 

  • Zhao, M., & Zhou, G. (2005). Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data. Forest Ecology and Management, 207(3), 295–313.

    Article  Google Scholar 

  • Zhao, M., Xiang, W., Peng, C., & Tian, D. (2009). Simulating age-related changes in carbon storage and allocation in a Chinese fir plantation growing in southern China using the 3-PG model. Forest Ecology and Management, 257(6), 1520–1531.

    Article  Google Scholar 

  • Zhu, W., Pan, Y., & Zhang, J. (2007). Estimation of net primary productivity of chinese terrestrial vegetation based on remote sensing. Acta Phytoecologica Sinica, 31(3), 413–424.

    Google Scholar 

Download references

Acknowledgments

This research was funded by the Program of National Basic Research Program of China (973 Program) “Global change and environmental risk’s evolution process and its integrated assessment model” (no. 2012CB955402) and the Project of State Key Laboratory of Earth Surface Processes and Resources Ecology. Special thanks are given to the referees and the editors for their instructive comments, suggestions, and editing for the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyong Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Yu, D., Xun, B. et al. The potential effects of climate change on the distribution and productivity of Cunninghamia lanceolata in China. Environ Monit Assess 186, 135–149 (2014). https://doi.org/10.1007/s10661-013-3361-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3361-6

Keywords

Navigation