Skip to main content

Advertisement

Log in

Humus characteristics and seasonal changes of soil arthropod communities in a natural sessile oak (Quercus petraea L.) stand and adjacent Austrian pine (Pinus nigra Arnold) plantation

Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In order to assess the effects of conversion of natural stands into plantations, soil invertebrate micro- and macroarthropod communities were evaluated for their abundance and richness in a sessile oak (SO; Quercus petraea L.) stand and adjacent Austrian pine (AP; Pinus nigra Arnold) plantation. Sites were sampled four times a year in 3-month intervals from May 2009 to February 2010. Humus characteristics such as total mass; carbon, lignin, and cellulose contents; and C/N ratio were significantly different between SO and AP. Statistically significant differences were detected on soil pH, carbon and nitrogen contents, and electrical conductivity between the two sites. The number of microarthropods was higher in AP than in the SO site. The annual mean abundance values of microarthropods in a square meter were 67,763 in AP and 50,542 in SO, and the annual mean abundance values of macroarthropods were 921 m−2 in AP and 427 m−2 in SO. Among the soil microarthropods, Acari and Collembola were the dominant groups. Shannon’s diversity index was more affected by evenness than species number despite the species diversity (H′) of soil arthropods being generally higher in the SO stand. The abundance of microarthropods showed clear seasonal trends depending upon the humidity of the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akburak, S., Oral, H. V., Ozdemir, E., & Makineci, E. (2013). Temporal variations of biomass, carbon and nitrogen of roots under different tree species. Scandinavian Journal of Forest Research, 28, 8–16.

    Article  Google Scholar 

  • Benckiser, G., (1997). Fauna in soil ecosystems: recycling processes, nutrient fluxes, and agricultural production. New York: Marcel Dekker.

  • Binkley, D., & Giardina, C. (1998). Why do tree species affect soils? The warp and woof of tree–soil interactions. Biogeochemistry, 42, 89–106.

    Article  Google Scholar 

  • Bird, S. B., Coulson, R. N., & Fisher, R. F. (2004). Changes in soil and litter arthropod abundance following tree harvesting and site preparation in a loblolly pine (Pinus taeda L.) plantation. Forest Ecology and Management, 202, 195–208.

    Article  Google Scholar 

  • Blake, G.R. & Hartge, K.H., (1986). Bulk density and particle density. In Klute, A. (Ed.), Methods of soil analysis. SSSA Book Series 5, Madison, pp. 363–381.

  • Boulton, A. M., & Amberman, K. D. (2006). How ant nests increase soil biota richness and abundance: a field experiment. Biodiversity and Conservation, 15, 69–82.

    Article  Google Scholar 

  • Çakır, M., & Makineci, E. (2009). Toprak mikro-eklembacaklılarının fonksiyonel yapıları ve ölü örtü ayrışmasına etkileri-Belgrad ormanı örneği. Bartın Orman Fakültesi Dergisi, 1, 135–140.

    Google Scholar 

  • Cassagne, N., Bal-Serin, M. C., Gers, C., & Gauquelin, T. (2004). Changes in humus properties and Collembolan communities following the replanting of beech forests with spruce. Pedobiologia, 48, 267–276.

    Article  Google Scholar 

  • Coleman, D. C., Crossley, D. & Hendrix, P. F., (2004). Fundamentals of soil ecology. San Diego: Academic.

  • David, J. F., & Gillon, D. (2002). Annual feeding rate of the millipede Glomeris marginata on Holm oak (Quercus ilex) leaf litter under Mediterranean conditions. Pedobiologia, 46, 42–52.

    Article  Google Scholar 

  • David, J. F., Ponge, J. F., & Delecour, F. (1993). The saprophagous macrofauna of different types of humus in beech forests of the Ardenne (Belgium). Pedobiologia, 37, 49–56.

    Google Scholar 

  • Dindal, D. L. (1990). Soil biology guide. New York: Wiley.

    Google Scholar 

  • Frouz, J., & Jilkova, V. (2008). The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecological News, 11, 191–199.

    Google Scholar 

  • Gillet, S., & Ponge, J. F. (2004). Are acid-tolerant Collembola able to colonise metal-polluted soil? Applied Soil Ecology, 26, 219–231.

    Article  Google Scholar 

  • Güner, Ş. T., Özkan, K., Çömez, A., & Çelik, N. (2011). İç Anadolu Bölgesi'nde Anadolu Karaçamının (Pinus nigra subsp. pallasiana) Verimli Olabileceği Potansiyel Alanların Odunsu Gösterge Türleri. Ekoloji, 20, 51–58.

    Google Scholar 

  • Hasegawa, M., & Takeda, H. (1996). Carbon and nutrient dynamics in decomposing pine needle litter in relation to fungal and faunal abundances. Pedobiologia, 40, 171–184.

    Google Scholar 

  • Hill, M. O., & Gauch, H. (1980). Detrended correspondence analysis: an improved ordination technique. Plant Ecology, 42, 47–58.

    Article  Google Scholar 

  • Irmak, A., & Çepel, N. (1968). Belgrad Ormanı’nda seçilen birer kayın, meşe ve karaçam meşcerelerinde yıllık yaprak dökümü miktarı ve bu yolla toprağa verilen besin maddelerinin tespiti üzerine araştırmalar. İ.Ü. Orman Fakültesi Dergisi, 2, 53–76.

    Google Scholar 

  • Joo, S. J., Yim, M. H., & Nakane, K. (2006). Contribution of microarthropods to the decomposition of needle litter in a Japanese cedar (Cryptomeria japonica D. Don) plantation. Forest Ecology and Management, 234, 192–198.

    Article  Google Scholar 

  • Kaneko, N., McLean, M. A., & Parkinson, D. (1998). Do mites and Collembola affect pine litter fungal biomass and microbial respiration? Applied Soil Ecology, 9, 209–213.

    Article  Google Scholar 

  • Krantz, G. W. (1978). A manual of acarology (2nd ed.). Corvallis: Oregon State University Bookstores.

    Google Scholar 

  • Lavelle, P. & Spain, A.V., (2001). Soil ecology. Dordrecht: Kluwer Academic.

  • Lawrence, K. L., & Wise, D. H. (2000). Spider predation on forest-floor Collembola and evidence for indirect effects on decomposition. Pedobiologia, 44, 33–39.

    Article  Google Scholar 

  • Loranger-Merciris, G., Bandyopadhyaya, I., Razaka, B., & Ponge, J. F. (2001). Does soil acidity explain altitudinal sequences in Collembolan communities? Soil Biology and Biochemistry, 33, 381–393.

    Article  Google Scholar 

  • Lorenz, K., Preston, C. M., Krumrei, S., & Feger, K. H. (2004). Decomposition of needle/leaf litter from Scots pine, black cherry, common oak and European beech at a conurbation forest site. European Journal of Forest Research, 123, 177–188.

    Article  Google Scholar 

  • Murphy, P. (1962). Progress in soil zoology. London: Butterworths.

    Google Scholar 

  • Nardi, S., Concheri, G., & Dell’Agnola, G. (1996). Biological activity of humus. In A. Piccolo (Ed.), Humic substances in terrestrial ecosystems (pp. 364–406). Amsterdam: Elsevier.

    Google Scholar 

  • Negri, I. (2004). Spatial distribution of Collembola in presence and absence of a predator. Pedobiologia, 48, 585–588.

    Article  Google Scholar 

  • Petersen, H., & Luxton, M. (1982). A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos, 39, 288–388.

    Article  Google Scholar 

  • Ponge, J. F. (2003). Humus forms in terrestrial ecosystems: a framework to biodiversity. Soil Biology and Biochemistry, 35, 935–945.

    Article  CAS  Google Scholar 

  • Rhoades, J. D., (1996). Salinity: electrical conductivity and total dissolved solids. In Sparks, D. L. (Ed.), Methods of soil analysis. Part 3-chemical methods (pp. 417–435). Madison: Soil Science Society of America book series 5. American Society of Agronomy.

  • Rowland, A., & Roberts, J. (1994). Lignin and cellulose fractionation in decomposition studies using acid–detergent fibre methods. Communications in Soil Science and Plant Analysis, 25, 269–277.

    Article  CAS  Google Scholar 

  • Salamon, J. A., Scheu, S. & Schaefer, M. (2008). The collembola community of pure and mixed stands of beech (Fagus sylvatica) and spruce (Picea abies) of different age. Pedobiologia, 51, 385–396.

    Google Scholar 

  • Sanders, D., & van Veen, F. J. (2011). Ecosystem engineering and predation: the multi–trophic impact of two ant species. Journal of Animal Ecology, 80, 569–576.

    Article  Google Scholar 

  • Schaefer, M., & Schauermann, J. (1990). The soil fauna of beech forests: comparison between a mull and a moder soil. Pedobiologia, 34, 299–314.

    Google Scholar 

  • Shannon, C., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.

    Google Scholar 

  • van Straalen, N. M. (1998). Evaluation of bioindicator systems derived from soil arthropod communities. Applied Soil Ecology, 9, 435–444.

    Google Scholar 

  • Vesterdal, L., Schmidt, I. K., Callesen, I., Nilsson, L. O., & Gundersen, P. (2008). Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management, 255, 35–48.

    Article  Google Scholar 

  • Wardle, D. A. (2002). Communities and ecosystems: linking the aboveground and belowground components. Princeton: Princeton University Press.

    Google Scholar 

  • Wiwatwitaya, D., & Takeda, H. (2005). Seasonal changes in soil arthropod abundance in the dry evergreen forest of north-east Thailand, with special reference to collembolan communities. Ecological Research, 20, 59–70.

    Article  Google Scholar 

  • WRB, (2006). IUSS Working Group. World reference base for soil resources 2006, 2nd ed. World Soil Resources Reports No. 103. FAO, Rome, p. 145.

  • Zanella, A., Jabiol, B., Ponge, J. F., Sartori, G., De Waal, R., Van Delft, B., et al. (2009). Toward a European humus forms reference base. Studi Trentini di Scienzi Naturali, 85, 145–151.

    Google Scholar 

  • Zanella, A., Jabiol, B., Ponge, J. F., Sartori, G., De Waal, R., Van Delft, B., et al. (2011). A European morpho-functional classification of humus forms. Geoderma, 164, 138–145.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Research Projects Coordination Unit of Istanbul University (project no. 3122). We specially thank Prof. Dr. Sophie Zechmeister-Boltenstern and Dr. Katharina Keiblinger (BOKU, Vienna, Austria) and Dr. Omer Kara and Süleyman Çoban for their help, support, and comments on the manuscript. The authors wish to thank anonymous reviewers and the editor whose remarks and indications significantly improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meric Cakir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cakir, M., Makineci, E. Humus characteristics and seasonal changes of soil arthropod communities in a natural sessile oak (Quercus petraea L.) stand and adjacent Austrian pine (Pinus nigra Arnold) plantation. Environ Monit Assess 185, 8943–8955 (2013). https://doi.org/10.1007/s10661-013-3225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3225-0

Keywords

Navigation