Skip to main content

Advertisement

Log in

Heavy metals concentrations in zooplankton and suspended particulate matter in a southwestern Atlantic temperate estuary (Argentina)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present work includes part of the first studies of metals concentrations in the zooplankton from a heavily industrialized estuary of Argentina, the Bahía Blanca estuary. Cd, Cu, and Pb concentrations in the zooplankton (macro- and mesozooplankton) and the suspended particulate matter were measured at stations with different degree of pollution. Physicochemical variables and zooplankton composition and abundance were also analyzed. Thus, the aim of the present work was to analyze the spatial and temporal distribution of heavy metals in these two different fractions, and the possible relation among them due to their importance in the biogeochemical cycles of marine environments. Samplings were carried out during a year, from March 2005 to April 2006, every 2 months, at stations located near chemical and petrochemical industries, stations far from these points and one station in an intermediate location. In the mesozooplankton, the mean concentrations of Cd, Cu, and Pb were 3.63 ± 1.46, 34.46 ± 5.40, and 11.54 ± 3.04 μg g−1 dry weight (d.w.) respectively, while in the macrozooplankton, 3.20 ± 2.28, 21.86 ± 4.79, and 8.36 ± 1.85 μg g−1 d.w. On the other hand, particulate Cd, Cu, and Pb presented a mean concentration of 3.33 ± 1.22, 12.75 ± 2.67, and 12.53 ± 3.20 μg g−1 d.w., respectively. Metals’ levels in both the SPM and zooplankton fluctuated throughout the study time and were relatively high in the particulate phase especially for Cu and Pb. Moreover, zooplankton accumulated important concentrations of the three metals. The sources of them are probably the discharges of the industries and domestic sewages located near the estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Public Health Association–American Water Works Association–Water Pollution Control Federation. (1998). Standard methods for the examination of water and wastewater. Washington: APHA.

    Google Scholar 

  • Amiard, J. C., Amiard-Triquet, C., Metayer, C., & Marchand, J. (1980). Estude du transfert de Cd, Pb, Cu et Zn dans les chaînes trophiques néritiques et estuariennes. I. Etat dans I’estuaire de la Loire (France) au tours de I’eté 1978. Water Research, 14, 665–673.

    Article  CAS  Google Scholar 

  • Amiard, J. C., Amiard-Triquet, C., Barka, S., Pellerin, J., & Rainbow, P. S. (2006). Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquatic Toxicology, 76, 60–202.

    Article  Google Scholar 

  • Andrade, S. (2001). Metales pesados en el agua de la zona interna de Bahía Blanca, y su toxicidad sobre algunas especies fitoplanctónicas. Ph.D. thesis, Universidad Nacional del Sur, Bahía Blanca, Argentina (unpublished).

  • Balls, P. W. (1990). Distribution and Composition of suspended particulate material in the Clyde Estuary and associated Sea Lochs. Estuarine, Coastal and Shelf Science, 30(5), 475–487.

    Article  CAS  Google Scholar 

  • Barwick, M., & Maher, W. (2003). Biotransference and biomagnification of selenium, copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquire Estuary NSW Australia. Marine Environmental Research, 56, 471–502.

    Article  CAS  Google Scholar 

  • Bibby, R. L., & Webster-Brown, J. G. (2006). Trace metal adsorption onto urban stream suspended particulate matter (Auckland region, New Zealand). Applied Geochemistry, 21, 1135–1151.

    Article  CAS  Google Scholar 

  • Botté, S. E. (2005). El rol de la vegetación en el ciclo biogeoquímico de los metales pesados en humedales del estuario de Bahía Blanca. Ph.D. thesis, Universidad Nacional del Sur, Bahía Blanca, Argentina (unpublished).

  • Cardelli, N. V., Cervellini, P. M., & Piccolo, M. C. (2006). Abundancia estacional y distribución espacial de Mysidacea en el Atlántico sudoccidental, estuario de Bahía Blanca (38°42′–39°26′ S y 62°28′–61°40′ W). Revista de Biología Marina y Oceanografía, 41(2), 177–185.

    Article  Google Scholar 

  • Chang, S. I., & Reinfelder, J. R. (2002). Relative importance of dissolved versus trophic bioaccumulation of copper in marine copepods. Marine Ecology Progress Series, 231, 179–186.

    Article  CAS  Google Scholar 

  • Clarke, J. (1998). Evaluation of censored data methods to allow statistical comparisons among very small samples with below detection limit observations. Environmental Science and Technology, 32, 177–183.

    Article  CAS  Google Scholar 

  • Depledge, M. H., & Bjerregaard, P. (1989). Haemolymph protein composition and copper levels in decapod crustaceans. Helgolander Meeresuntersuchungen, 43, 207–223.

    Article  Google Scholar 

  • Eberlein, K., & Kattner, G. (1987). Automatic method for the determination of orthophosphate and total dissolved phosphorus in the marine environment. Analytical Chemistry, 326, 354–357.

    Article  CAS  Google Scholar 

  • Elbaz-Poulichet, F. P. H., Huang, W. W., & Martin, J. M. (1984). Lead cycling in estuaries, illustrated by the Gironde Estuary, France. Nature, 308, 409–414.

    Article  CAS  Google Scholar 

  • Erk, M., Muyssen, B. T. A., Ghekiere, A., & Janssen, C. R. (2008). Metallothioneins and cytosolic metals in Neomysis integer exposed to cadmium at different salinities. Marine Environmental Research, 65, 437–444.

    Article  CAS  Google Scholar 

  • Everaarts, J. M., Heesters, R., & Fisher, C. V. (1993). Heavy metals (Cu, Zn, Pb, Cd) in sediment, zooplankton and epibenthic invertebrates from the area of the continental slope of the Banc d’ Arguin (Mauretania). Hydrobiologia, 258, 41–58.

    Article  CAS  Google Scholar 

  • Fang, T. H., Hwang, J. S., Hsiao, S. H., & Chen, H. Y. (2006). Trace metals in seawater and copepods in the ocean outfall area off the northern Taiwan coast. Marine Environmental Research, 61, 224–243.

    Article  CAS  Google Scholar 

  • Ferrer, L., Contardi, E., Andrade, S., Asteasuain, R., Pucci, A. E., & Marcovecchio, J. E. (2000). Environmental cadmium and lead concentrations in the Bahía Blanca estuary (Argentina): potential toxic effects of Cd and Pb on crab larvae. Oceanologia, 43, 493–504.

    Google Scholar 

  • Ferrer, L. D., Andrade, J. S., Contardi, E. T., Asteasuain, R. O., & Marcovecchio, J. E. (2003). Copper and zinc concentrations in Bahía Blanca estuary (Argentina) and their acute lethal effects on larvae of the crab Chasmagnathus granulata. Chemical Speciation and Bioavailability, 15, 1–7.

    Article  Google Scholar 

  • Fisher, N. S., Nolan, C. V., & Fowler, S. W. (1991). Assimilation of metals in marine copepods and its biogeochemical implications. Marine Ecology Progress Series, 71, 37–43.

    Article  CAS  Google Scholar 

  • Fowler, S. W., & Knauer, G. A. (1986). Role of large particles in the transport of elements and organic compounds through the oceanic water column. Progress in Oceanography, 16, 147–194.

    Article  Google Scholar 

  • Freije, R. H., & Gayoso, A. M. (1988). Producción primaria del estuario de Bahía Blanca. Informes UNESCO, Ciencias del Mar, 47, 112–114.

    Google Scholar 

  • Gavriil, A. M., & Angelidis, M. O. (2005). Metal and organic carbon distribution in water column of a shallow enclosed Bay at the Aegean Sea Archipelago: Kalloni Bay, island of Lesvos, Greece. Estuarine, Coastal and Shelf Science, 64, 200–210.

    Article  CAS  Google Scholar 

  • Hatje, V., Birch, G. F., & Hill, D. M. (2001). Spatial and temporal variability of particulate trace metals in Port Jackson estuary, Australia. Estuarine, Coastal and Shelf Science, 53, 63–77.

    Article  CAS  Google Scholar 

  • Hoffmeyer, M. S. (1994). Seasonal succession of Copepoda in the Bahía Blanca estuary. Hydrobiologia, 292(293), 303–308.

    Article  Google Scholar 

  • Hoffmeyer, M. S. (2004a). Mesozooplancton. In M. C. Piccolo & M. S. Hoffmeyer (Eds.), Ecosistema del Estuario de Bahía Blanca (pp. 133–141). Bahía Blanca: Instituto Argentino de Oceanografía (IADO-CONICET).

    Google Scholar 

  • Hoffmeyer, M. S. (2004b). Decadal change in zooplankton seasonal succession in the Bahía Blanca estuary, Argentina, following introduction of two zooplankton species. Journal of Plankton Research, 26, 181–189.

    Article  Google Scholar 

  • Hoffmeyer, M. S., & Mianzan, H. (2004). Macro-zooplancton del estuario y aguas costeras adyacentes. In M. C. Piccolo & M. S. Hoffmeyer (Eds.), Ecosistema del Estuario de Bahía Blanca (pp. 143–151). Bahía Blanca: Instituto Argentino de Oceanografía.

    Google Scholar 

  • Hoffmeyer, M. S., Berasategui, A. A., Beigt, D., & Piccolo, M. C. (2008). Environmental regulation of the estuarine copepods Acartia tonsa and Eurytemora americana during coexistence period. Journal of the Marine Biological Association of the United Kingdom, 89, 355–361.

    Article  Google Scholar 

  • Hutchins, D. A., DiTullio, G. R., & Bruland, K. W. (1993). Iron and regenerated production: evidence for biological iron recycling in two marine environments. Limnology and Oceanography, 38, 1242–1255.

    Article  CAS  Google Scholar 

  • Kahle, J., & Zauke, G. P. (2003). Trace metals in Antarctic copepods from the Weddell Sea (Antarctica). Chemosphere, 51, 409–417.

    Article  CAS  Google Scholar 

  • Kehrig, H. A., Palermo, E. F. A., Seixas, T. G., Branco, C. W. C., Moreira, I., & Malm, O. (2009). Trophic transfer of methylmercury and trace elements by tropical estuarine seston and plankton. Estuarine, Coastal and Shelf Science, 85, 36–44.

    Article  CAS  Google Scholar 

  • Kennish, M. J. (1997). Practical handbook of estuarine and marine pollution. Boca Ratón: CRC Press.

    Google Scholar 

  • Lorenzen, C. J., & Jeffrey, S. W. (1980). Determination of chlorophyll in seawater. UNESCO Technical Paper Marine Science, 35, 1–20.

  • Marcovecchio, J. E., & Ferrer, L. (2005). Distribution and geochemical partitioning of heavy metals in sediments of the Bahía Blanca estuary, Argentina. Journal of Coastal Research, 21(4), 826–834.

    Article  Google Scholar 

  • Marcovecchio, J. E., & Freije, R. H. (2004). Efectos de la intervención antrópica sobre sistemas marinos costeros: El estuario de Bahía Blanca. Anales de la Academia Nacional de Ciencias Exactas, Físicas y Naturales, 56, 115–132.

    Google Scholar 

  • Marcovecchio, J. E., Botté, S., Delucchi, F., Arias, A., Fernández Severini, M., De Marco, S., Tombesi, N., Andrade, S., Ferrer, L., & Freije, R. H. (2008). Pollution processes in Bahía Blanca estuarine environment. In R. Neves, J. Baretta, & M. Mateus (Eds.), Perspectives on integrated coastal zone management in South America (pp. 303–316). Lisbon: IST Press.

    Google Scholar 

  • Marsden, I. D., & Rainbow, P. S. (2004). Does the accumulation of trace metals in crustaceans affect their ecologydthe amphipod example? Journal of Experimental Marine Biology and Ecology, 300, 373–408.

    Article  CAS  Google Scholar 

  • Masson, M., Blanc, G., & Schäfer, J. (2006). Geochemical signals and source contributions to heavy metal (Cd, Zn, Pb, Cu) fluxes into the Gironde Estuary via its major tributaries. Science of the Total Environment, 370(1), 133–146.

    Article  CAS  Google Scholar 

  • Miramand, P., Guyot, T., Rybarczyk, H., Elkaïm, B., Mouny, P., Dauvin, J. C., & Bessineton, C. (2001). Contamination of the biological compartment in the Seine Estuary by Cd, Cu, Pb, and Zn. Estuaries, 24(6B), 1056–1065.

    Article  CAS  Google Scholar 

  • Nguyen, H. L., Leermakers, M., Elskens, M., De Ridder, F., Doan, T. H., & Baeyens, W. (2005). Correlations, partitioning and bioaccumulation of heavy metals between different compartments of Lake Balaton. Science of the Total Environment, 341, 211–226.

    Article  CAS  Google Scholar 

  • Omori, M., & Ikeda, T. (1984). Methods in marine zooplankton ecology. New York: Wiley.

    Google Scholar 

  • Pempkowiak, J., Walkusz-Miotk, J., Beldowski, J., & Walkusz, W. (2006). Heavy metals in zooplankton from the Southern Baltic. Chemosphere, 62, 1697–1708.

    Article  CAS  Google Scholar 

  • Perillo, G. M. E., & Piccolo, M. C. (1999). Geomorphological and physical characteristics of the Bahía Blanca estuary, Argentina. In G. M. E. Perillo, M. C. Piccolo, & M. Pino-Quiriva (Eds.), Estuaries of South America. Their geomorphology and dynamics (pp. 195–216). Berlin: Springer.

    Chapter  Google Scholar 

  • Piccolo, M. C., Perillo, G. M. E., & Melo, W. D. (2008). The Bahía Blanca estuary: an integrated overview of its geomorphology and dynamics. In R. Neves, J. Baretta, & M. Mateus (Eds.), Perspectives on integrated coastal zone management in South America (pp. 219–229). Lisbon: IST Press.

    Google Scholar 

  • Popovich, C. A., Spetter, C. V., Marcovecchio, J. E., & Freije, R. H. (2008). Dissolved nutrients availability during winter diatom bloom in a turbid and shallow estuary, (Bahía Blanca, Argentina). Journal of Coastal Research, 24, 95–102.

    Article  CAS  Google Scholar 

  • Rainbow, P. S. (1993). The significance of trace metals concentrations in marine invertebrates. In R. Dallinger & P. S. Rainbow (Eds.), Ecotoxicology of metals in invertebrates (pp. 3–23). Boca Ratón: Lewis Publishers.

    Google Scholar 

  • Rainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrates: why and so what? Environmental Pollution, 120, 497–507.

    Article  CAS  Google Scholar 

  • Reinfelder, J. R., & Fisher, N. S. (1991). The assimilation of elements ingested by marine copepods. Science, 251, 794–796.

    Article  CAS  Google Scholar 

  • Richardson, A. J. (2008). In hot water: zooplankton and climate change. ICES Journal of Marine Science, 65, 279–295.

    Article  Google Scholar 

  • Ridout, P. S., Rainbow, P. S., Roe, H. S. J., & Jones, H. R. (1989). Concentrations of V, Cr, Mn, Fe, Ni Co, Cu Zn, As, Cd in mesopelagic crustaceans from the north east Atlantic Ocean. Marine Biology, 100, 465–471.

    Article  Google Scholar 

  • Scarlato, N., Gerpe, M., & Marcovecchio, J. E. (1993). Trace metal levels relationship between suspended particulate matter and zooplankton from a coastal ecosystem of Argentina. Perspectives for Environmental Geochemistry in Tropical Countries, 1, 421–424.

    Google Scholar 

  • Scarlato, N., Marcovecchio, J. E., & Pucci, A. E. (1997). Heavy metal distribution in zooplankton from Buenos Aires coastal waters (Argentina). Chemical Speciation and Bioavailability, 9(1–2), 1–6.

    Google Scholar 

  • Schminke, H. K. (2007). Entomology for the copepodologist. Journal of Plankton Research, 29(Suppl. I), 149–162.

    Google Scholar 

  • Schulz-Baldes, M. (1992). Baseline study on Cd, Cu and Pb concentrations in Atlantic neuston organisms. Marine Biology, 112, 211–222.

    Article  CAS  Google Scholar 

  • Soto-Jiménez, M. F., Páez-Osuna, F., Scelfo, G., Hibdon, S., Franks, R., & Aggarawl, J. (2008). Lead pollution in subtropical ecosystems on the SE Gulf of California Coast: a study of concentrations and isotopic composition. Marine Environmental Research, 66, 451–458.

    Article  Google Scholar 

  • Spetter, C. V. (2006). Ciclo biogeoquímico de nutrientes inorgánicos de nitrógeno en los humedales del estuario de Bahía Blanca. Ph.D. thesis, Universidad Nacional del Sur, Bahía Blanca, Argentina, unpublished.

  • Strickland, J. H. D., & Parsons. T. R. (1968). A practical handbook of seawater analysis. In Stevenson J. C. (Ed.), Fisheries research board of Canada (pp. 167–311). Ottawa, Bulletin

  • Technicon Autoanalyzer II (1973). Silicates in water and seawater. Industrial method No. 186-72 W/B.

  • Treguer, P. & Le Corre, P., 1975. Manuel DAnalyse des Sels Nutritifs Dans LEau de Mer (l'utilisation du manuel Autoanalyzer II Technicon), France.

  • Turner, A., & Millward, G. E. (2002). Suspended particles: their role in estuarine biogeochemical cycles. Estuarine, Coastal and Shelf Science, 55, 857–883.

    Article  CAS  Google Scholar 

  • Vicente-Martorell, J. J., Galindo-Riaño, M. D., García-Vargas, M., & Granado-Castro, M. D. (2009). Biovailability of heavy metals monitoringwater, sediments and fish species from a polluted estuary. Journal of Hazardous Materials, 162, 823–836.

    Article  CAS  Google Scholar 

  • Waeles, M., Riso, R. D., & Le Corre, P. (2005). Seasonal variations of cadmium speciation in the Penzé estuary, NW France. Estuarine, Coastal and Shelf Science, 65, 143–152.

    Article  Google Scholar 

  • Wang, W. X. (2002). Interactions of trace metals and different marine food chains. Marine Ecology Progress Series, 243, 295–309.

    Article  CAS  Google Scholar 

  • Wang, W. X., & Fisher, N. S. (1998a). Accumulation of trace elements in a marine copepod. Limnology and Oceanography, 43, 273–283.

    Article  CAS  Google Scholar 

  • Wang, W. X., & Fisher, N. S. (1998b). Excretion of trace elements by marine copepods and their bioavailability to diatoms. Journal of Marine Research, 56, 713–729.

    Article  CAS  Google Scholar 

  • Whitfield, M., & Turner, D. (1987). The role of particles in regulating the composition of seawater. In W. Stumm (Ed.), Aquatic surface chemistry: chemical processes at the particle water interface (pp. 457–493). New York: Wiley.

    Google Scholar 

  • Yurkovskis, A. (2004). Dynamic of particulate major and trace elements in the lower reaches of the Daugava River and adjacent area of the Gulf of Riga (Baltic Sea). Marine Pollution Bulletin, 49, 249–263.

    Article  CAS  Google Scholar 

  • Zar, J. H. (1999). Bioestatistical analysis. Englewood Cliffs: Prentice-Hall. 663 pp.

    Google Scholar 

  • Zauke, G. P., & Schmalenbach, I. (2006). Heavy metals in zooplankton and decapod crustaceans from the Barents Sea. Science of the Total Environment, 359, 283–294.

    Article  CAS  Google Scholar 

  • Zauke, G. P., Krause, M., & Weber, A. (1996). Trace metals in mesozooplankton of the North Sea: concentrations in different taxa and preliminary results on bioaccumulation in copepod collectives: (Calanus finmarchicus/C. helgolandicus). Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 81, 141–160.

    Article  CAS  Google Scholar 

  • Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54, 1051–1070.

    Article  CAS  Google Scholar 

  • Zhou, J. L., Liu, Y. P., & Abrahams, P. W. (2003). Trace metal behaviour in the Conwy estuary, North Wales. Chemosphere, 51, 429–440.

    Article  CAS  Google Scholar 

  • Zwolsman, J. J. G., & van Eck, G. T. M. (1999). Geochemistry of major elements and trace metals in suspended matter of the Scheldt estuary, southwest Netherlands. Marine Chemistry, 66, 91–111.

    Google Scholar 

Download references

Acknowledgments

The authors thank Lic. M. Nedda Chiarello, Lic. Raúl Asteasuain, and Dr. S.E. Botté who provided valuable help during this research. This study was part of the Ph.D. thesis of M.D. Fernández Severini and was supported by a grant funded by the National Council of Scientific and Technological Researches (CONICET-Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melisa Daiana Fernández-Severini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Severini, M.D., Hoffmeyer, M.S. & Marcovecchio, J.E. Heavy metals concentrations in zooplankton and suspended particulate matter in a southwestern Atlantic temperate estuary (Argentina). Environ Monit Assess 185, 1495–1513 (2013). https://doi.org/10.1007/s10661-012-3023-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-3023-0

Keywords

Navigation