Skip to main content
Log in

Use of multivariate indicator kriging methods for assessing groundwater contamination extents for irrigation

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Multivariate geostatistical approaches have been applied extensively in characterizing risks and uncertainty of pollutant concentrations exceeding anthropogenic regulatory limits. Spatially delineating an extent of contamination potential is considerably critical for regional groundwater resources protection and utilization. This study used multivariate indicator kriging (MVIK) to determine spatial patterns of contamination extents in groundwater for irrigation and made a predicted comparison between two types of MVIK, including MVIK of multiplying indicator variables (MVIK-M) and of averaging indicator variables (MVIK-A). A cross-validation procedure was adopted to examine the performance of predicted errors, and various probability thresholds used to calculate ratios of declared pollution area to total area were explored for the two MVIK methods. The assessed results reveal that the northern and central aquifers have excellent groundwater quality for irrigation use. Results obtained through a cross-validation procedure indicate that MVIK-M is more robust than MVIK-A. Furthermore, a low ratio of declared pollution area to total area in MVIK-A may result in an unrealistic and unreliable probability used to determine extents of pollutants. Therefore, this study suggests using MVIK-M to probabilistically determine extents of pollutants in groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • AERC (Agriculture Engineering Research Center). (2008). Analysis and evaluation of the groundwater quality survey in Taiwan areas (p. 487). Taiwan: Water Resources Agency, Ministry of Economic Affairs, Executive Yuan.

    Google Scholar 

  • Castrignanò, A., Goovaerts, P., Lulli, L., & Bragato, G. (2000). A geostatistical approach to estimate probability of occurrence of Tuber melanosporum in relation to some soil properties. Geoderma, 98, 95–113.

    Article  Google Scholar 

  • Chilès, J. P., & Delfiner, P. (1999). Geostatistics: modeling spatial uncertainty (pp. 283–287). New York: Wiley.

    Book  Google Scholar 

  • Chu, H. J., Lin, Y. P., Jang, C. S., & Chang, T. K. (2010). Delineating the hazard zone of multiple soil pollutants by multivariate indicator kriging and conditioned Latin hypercube sampling. Geoderma, 158(3–4), 242–251.

    Article  CAS  Google Scholar 

  • Deutsch, C. V. (2002). Geostatistical reservoir modeling (pp. 124–152). New York: Oxford University Press.

    Google Scholar 

  • Deutsch, C. V., & Journel, A. G. (1998). GSLIB: Geostatistical Software Library and User’s Guide (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  • Diodato, N., & Ceccarelli, M. (2004). Multivariate indicator kriging approach using a GIS to classify soil degradation for Mediterranean agricultural lands. Ecological Indicators, 4(3), 177–187.

    Article  Google Scholar 

  • Eaton, F. M. (1950). Significance of carbonates in irrigation water. Soil Science, 69, 123–133.

    Article  CAS  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation (pp. 259–368). New York: Oxford University Press.

    Google Scholar 

  • Goovaerts, P., AvRuskin, G., Meliker, J., Slotnick, M., Jacquez, G., & Nriagu, J. (2005). Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resources Research, 41. doi:10.1029/2004WR003705.

  • Halvorson, J. J., Smith, J. L., & Papendick, R. I. (1996). Integration of multiple soil parameters to evaluate soil quality: a field example. Biology and Fertility of Soils, 21(3), 207–214.

    Article  Google Scholar 

  • Jang, C. S., & Chen, J. S. (2009). Probabilistic assessment of groundwater mixing with surface water for agricultural utilization. Journal of Hydrology, 376(1–2), 188–199.

    Article  CAS  Google Scholar 

  • Jang, C. S., Liu, C. W., Lu, K. L., & Lin, C. C. (2007). Delimitation of arsenic-contaminated groundwater using risk-based indicator approaches around blackfoot disease hyperendemic areas of southern Taiwan. Environmental Monitoring and Assessment, 134, 293–304.

    Article  CAS  Google Scholar 

  • Jang, C. S., Chen, S. K., & Lin, C. C. (2008). Using multiple-variable indicator kriging to assess groundwater quality for irrigation in the aquifers of the Choushui River alluvial fan. Hydrological Processes, 22(22), 4477–4489.

    Article  CAS  Google Scholar 

  • Jang, C. S., Liou, Y. T., & Liang, C. P. (2010). Probabilistically determining roles of groundwater used in aquacultural fishponds. Journal of Hydrology, 388, 491–500.

    Article  Google Scholar 

  • Juang, K. W., & Lee, D. Y. (1998). Simple indicator kriging for estimating the probability of incorrectly delineating hazardous areas in a contaminated site. Environmental Science & Technology, 32, 2487–2493.

    Article  CAS  Google Scholar 

  • Juang, K. W., & Lee, D. Y. (2000). Comparison of three nonparametric kriging methods for delineating heavy-metal contaminated soils. Journal of Environmental Quality, 29, 197–205.

    Article  CAS  Google Scholar 

  • Juang, K. W., Chen, Y. S., & Lee, D. Y. (2004). Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils. Environmental Pollution, 127, 229–238.

    Article  CAS  Google Scholar 

  • Lee, J. J., Liu, C. W., Jang, C. S., & Liang, C. P. (2008). Zonal management of multi-purpose use of water from arsenic-affected aquifers by using a multi-variable indicator kriging approach. Journal of Hydrology, 359(3–4), 260–273.

    Article  CAS  Google Scholar 

  • Lin, Y. P., Cheng, B. Y., Shyu, G. S., & Chang, T. K. (2010). Combining a finite mixture distribution model with indicator kriging to delineate and map the spatial patterns of soil heavy metal pollution in Chunghua County, central Taiwan. Environmental Pollution, 158(1), 235–244.

    Article  CAS  Google Scholar 

  • Liu, C. W., Jang, C. S., & Liao, C. M. (2004). Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan). Science of the Total Environment, 321, 173–188.

    Article  CAS  Google Scholar 

  • Liu, C. W., Wang, S. W., Jang, C. S., & Lin, K. H. (2006). Occurrence of arsenic in groundwater of the Choshui river alluvial fan, Taiwan. Journal of Environmental Quality, 35, 68–75.

    Article  CAS  Google Scholar 

  • Oyedele, D. J., Amusan, A. A., & Obi, A. O. (1996). The use of multiple-variable indicator kriging technique for assessment of the suitability of an acid soil for maize. Tropical Agriculture, 73(4), 259–263.

    Google Scholar 

  • Saisana, M., Dubois, G., Chaloulakou, A., & Spyrellis, N. (2004). Classification criteria and probability risk maps: limitations and perspectives. Environmental Science & Technology, 38, 1275–1281.

    Article  CAS  Google Scholar 

  • Sawyer, C. N., & McCarty, P. L. (1978). Chemistry for Environmental Engineering (3rd ed., pp. 371–373). New York: McGraw-Hill.

    Google Scholar 

  • Smith, J.L., & Halvorson, J.J. (2011). Field scale studies on the spatial variability of soil quality indicators in Washington State, USA. Applied and Environmental Soil Science, 2011, Article ID 198737. doi:10.1155/2011/198737.

  • Smith, J. L., Halvorson, J. J., & Papendick, R. I. (1993). Using multiple-variable indicator kriging for evaluating soil quality. Soil Science Society of America Journal, 57, 743–749.

    Article  Google Scholar 

  • Taiwan CGS (Central Geological Survey). (2002). Hydrogeological survey report of Pingtung Plain, Taiwan (pp. 97–142). Taiwan: Central Geological Survey, Ministry of Economic Affairs, Executive Yuan.

    Google Scholar 

  • Taiwan Sugar Company. (2005). Groundwater quality monitoring and analysis for Taiwan Groundwater Monitoring Network (2/2) (pp. 10-1–10-74). Taiwan: Water Resources Agency, Ministry of Economic Affairs, Executive Yuan.

    Google Scholar 

  • Ting, C. S., Zhou, Y., de Vries, J. J., & Simmers, I. (1998). Development of a preliminary ground water flow model for water resources management in the Pingtung plain, Taiwan. Ground Water, 35(6), 20–36.

    Article  Google Scholar 

  • USSL (1954). Diagnosis and improvement of saline and alkali soils. USDA Hand Book, 60, (pp. 147). Washington DC.

  • Van Meirvenne, M., & Goovaerts, P. (2001). Evaluating the probability of exceeding a site-specific soil cadmium contamination threshold. Geoderma, 102, 75–100.

    Article  Google Scholar 

  • Wang, S. W., Liu, C. W., & Jang, C. S. (2007). Factors responsible for high arsenic concentrations in two groundwater catchments at Taiwan. Applied Geochemistry, 22, 460–476.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the Water Resources Agency, Ministry of Economic Affairs of the Republic of China, for providing hydrochemical data on groundwater in the Pingtung Plain and the National Science Council of the Republic of China for financially supporting this research under contract no. NSC 100-2313-B-424-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Shin Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, CS. Use of multivariate indicator kriging methods for assessing groundwater contamination extents for irrigation. Environ Monit Assess 185, 4049–4061 (2013). https://doi.org/10.1007/s10661-012-2848-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2848-x

Keywords

Navigation