Skip to main content
Log in

Clastogenicity of landfarming soil treated with sugar cane vinasse

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The addition of nutrients and/or soil bulking agents is used in bioremediation to increase microbial activity in contaminated soils. For this purpose, some studies have assessed the effectiveness of vinasse in the bioremediation of soils contaminated with petroleum waste. The present study was aimed at investigating the clastogenic/aneugenic potential of landfarming soil from a petroleum refinery before and after addition of sugar cane vinasse using the Allium cepa bioassay. Our results show that the addition of sugar cane vinasse to landfarming soil potentiates the clastogenic effects of the latter probably due the release of metals that were previously adsorbed into the organic matter. These metals may have interacted synergistically with petroleum hydrocarbons present in the landfarming soil treated with sugar cane vinasse. We recommend further tests to monitor the effects of sugar cane vinasse on soils contaminated with organic wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Associação Brasileira de Normas Técnicas. (1986). NBR-6457: amostras de solo—preparação para ensaios de compactação e ensaios de caracterização. Rio de Janeiro, pp. 9.

  • Associação Brasileira de Normas Técnicas. (2004). NBR-10.007: amostragem de resíduos sólidos. Rio de Janeiro, pp. 25.

  • Borboa, L., & De la Torre, C. (1996). The gentoxicity of Zn (II) and Cd (II) in Allium cepa root meristematic cells. New Phytologist, 134, 481–486.

    Google Scholar 

  • Companhia de Tecnologia e Saneamento Ambiental. (2006). Norma Técnica P4.231: Vinhaça—critérios e procedimentos para aplicação em solo agrícola. São Paulo, pp. 17.

  • Cotelle, S., Masfaraud, J. F., & Férard, J. F. (1999). Assessment of genotoxicity of contaminated soil with the Allium/Vicia—micronucleus and the Tradescantia—micronucleus assays. Mutation Research, 426, 167–171.

    Article  CAS  Google Scholar 

  • Crivelaro, S. H. R. (2005). Associação de borra oleosa de refinaria de petróleo e vinhaça visando à biodegradação. 62f. Trabalho de Conclusão de Curso (Curso de Ciências Biológicas)—Instituto de Biociências, Universidade Estadual Paulista, Rio Claro-SP.

  • Fernandes, T. C. C., Mazzeo, D. E. C., & Marin-Morales, M. A. (2007). Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to trifluralin herbicide. Pesticide Biochemistry and Physiology, 88(3), 252–259.

    Article  CAS  Google Scholar 

  • Ferreira, L. F. R., Aguiar, M. M., Messias, T. G., Pompeu, G. B., Lopez, A. M. Q., Silva, D. P., & Monteiro, R. T. (2011). Evaluation of sugar-cane vinasse treated with Pleurotus sajor-caju utilizing aquatic organisms as toxicological indicators. Ecotoxicology and Environmental Safety, 74, 132–137.

    Article  Google Scholar 

  • Fiskejö, G. (1985). The Allium test as a standard in environmental monitoring. Hereditas, 102, 99–112.

    Article  Google Scholar 

  • Freire, W. J., & Cortez, L. A. B. (2000). Vinhaça de cana-de-açúcar. Guaíba: Agropecuária.

    Google Scholar 

  • Glória, N. A., & Orlando Filho, J. (1983). Aplicação de vinhaça como fertilizante. São Paulo: Coopersucar.

    Google Scholar 

  • Hamdi, H., Benzarti, S., Ianasc, L. M., Aoyamaa, I., & Jedidid, N. (2007). Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biology and Biochemistry, 39, 1926–1935.

    Article  CAS  Google Scholar 

  • Harmsen, J. (1991). Possibilities and limitations of landfarming for cleaning contaminated sites. In R. E. Hinchee & R. F. Olfenbuttel (Eds.), On-site bioreclamation: processes for xenobiotic and hydrocarbon treatment. London: Butterworth-Heinemann.

    Google Scholar 

  • Hejazi, R. F., Husain, T., & Khan, F. I. (2003). Landfarming operation of oily sludge in arid region—human health risk assessment. Journal of Hazardous Materials, 99, 287–302.

    Article  CAS  Google Scholar 

  • Khan, F. I., Husain, T., & Hejazi, R. (2004). An overview and analysis of site remediation technologies. Journal of Environmental Management, 71, 95–122.

    Article  Google Scholar 

  • Kirsch-Volders, M., Vanhauwaert, A., De Boeck, M., & Decordier, I. (2002). Importance of detecting numerical versus structural chromosome aberrations. Mutation Research, 504, 137–148.

    Article  CAS  Google Scholar 

  • Kong, M. S., & Ma, T. H. (1999). Genotoxicity of contaminated soil and shallow well water detected by plant bioassays. Mutation Research, 426, 221–228.

    Article  CAS  Google Scholar 

  • Leme, D. M., & Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: a review on its application. Mutation Research, 682, 71–81.

    Article  CAS  Google Scholar 

  • Marcano, L., Carruyo, I., Del Campo, A., & Montiel, X. (2004). Cytotoxicity and mode of action of maleic hydrazide in root tips of Allium cepa L. Environmental Research, 94, 221–226.

    Article  CAS  Google Scholar 

  • Matsumoto, S. T., Mantovani, M. S., Malagutti, M. I. A., Dias, A. L., Fonseca, I. C., & Marin-Morales, M. A. (2006). Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips. Genetics and Molecular Biology, 29, 148–158.

    Article  CAS  Google Scholar 

  • McBride, M. B. (1995). Toxic metal accumulation from agricultural use of sewage sludge. Are USEPA regulations protective? Journal of Environmental Quality, 24, 5–18.

    Article  CAS  Google Scholar 

  • Pinto-Mariano, A., Crivelaro, S. H. R., Angelis, D. F., Bonoto D. M. (2006). Use of vinasse, an ethanol distillery waste, as an amendment to bioremediation of diesel oil contaminated soils. In: XXII INTERAMERICAN CONFEDERATION OF CHEMICAL ENGINEERING, 2006, Buenos Aires, Anais do XXII Interamerican Confederation of Chemical Engineering.

  • Plaza, G., Nalecz-Jawecki, G., Ulfig, K., & Brigmon, R. (2005). The application of bioassays as indicators of petroleum-contaminated soil remediation. Chemosphere, 59, 289–296.

    Article  CAS  Google Scholar 

  • Prata, F., Lavorenti, A., Reginato, J. B., & Tornisielo, V. L. (2001). Degradação e sorção de ametrina em dois solos com aplicação de vinhaça. Pesquisa Agropecuária Brasileira, 36(7), 975–981.

    Article  Google Scholar 

  • Ramalho, J. F. G. P., & Sobrinho, N. M. B. A. (2001). Metais pesados em solos cultivados com cana-de-açúcar pelo uso de resíduos agroindustriais. Revista Floresta e Ambiente, 8(1), 1.120–129.

    Google Scholar 

  • Rank, J. (2003). The method of Allium cepa anaphase-telophase chromosome aberration assay. Ekologija, 1, 38–42.

  • Rank, J., & Nielsen, M. H. (1993). A modified Allium cepa test as a tool in the screening of the genotoxity of complex mixtures. Hereditas, 118, 49–53.

    Article  CAS  Google Scholar 

  • Riser-Roberts, E. (1998). Remediation of petroleum contaminated soil: biological, physical, and chemical processes. Boca Raton: Lewis Publishers.

    Book  Google Scholar 

  • Sarkar, D., Ferguson, M., Datta, R., & Birnbaum, S. (2005). Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation and monitored natural attenuation. Environmental Pollution, 136, 187–195.

    Article  CAS  Google Scholar 

  • Segura-Muñoz, S. I., Silva-Oliveira, A., Nikaido, M., Trevilato, T. M. B., Bocio, A., Takayanagui, A. M. M., & Domingo, J. L. (2006). Metal levels in sugar cane (Saccharum spp.) samples from an area under the influence of a municipal landfill and a medical waste treatment system in Brazil. Environment International, 32, 52–57.

    Article  Google Scholar 

  • Souza, T. S., Hencklein, F. A., Angelis, D. F., Gonçalves, R. A., & Fontanetti, C. S. (2009). The Allium cepa bioassay to evaluate landfarming soil, before and after the addition of rice hulls to accelerate organic pollutants biodegradation. Ecotoxicology and Environmental Safety, 72, 1363–1368.

    Article  CAS  Google Scholar 

  • Türkoglu, S. (2006). Genotoxicity of five food preservatives tested on root tips of Allium cepa. Mutation Research, 626, 4–14.

    Article  Google Scholar 

  • Udom, B. E., Mbagwu, J. S. C., Adesodun, J. K., & Agbim, N. N. (2004). Distributions of zinc, copper, cadmium and lead in a tropical ultisol after long term disposal of sewage sludge. Environmental International, 30, 467–470.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA). (1994). Landfarming In: How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites: A guide for Corrective Action Plan reviews (EPA 510-B-94-003 and EPA 510-B-95-007).

  • Van Erp, P. J., & Van Lune, P. (1991). Long-term heavy metal leaching from soils, sewage sludge and soil/sewage mixtures. Environmental Science and Technology, 25, 706–711.

    Google Scholar 

Download references

Acknowledgments

This research was supported by FAPESP (São Paulo Research Foundation) Grant # 06/52383-7, CNPq (National Council for Scientific and Technological Development) and FUNDUNESP (Fundation for the Development of UNESP). The authors thank Valdenilson José Alves de Oliveira and Sandra Veloso for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana da Silva Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva Souza, T., Hencklein, F.A., de Franceschi de Angelis, D. et al. Clastogenicity of landfarming soil treated with sugar cane vinasse. Environ Monit Assess 185, 1627–1636 (2013). https://doi.org/10.1007/s10661-012-2656-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2656-3

Keywords

Navigation