Skip to main content
Log in

Optimization of digestion parameters for analysing the total sulphur of mine tailings by inductively coupled plasma optical emission spectrometry

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The oxidation of sulphidic mine tailings and consequent acid generation poses challenges for the environment. Accurate and precise analysis of sulphur content is necessary for impact assessment and management of mine tailings. Here, the authors aim at developing a rapid and easy digestion procedure, which may analyse and measure the total amount of sulphur in mine tailings by using inductively coupled plasma. For evaluating effects of several variables, the researchers used a univariate (analysis of variance (ANOVA)) strategy and considered factors such as composition of the acid mixture, heating time, and refluxing device to optimize the performance. To do the experiment, the researchers have used two certified reference materials (KZK-1 and RTS-2) and samples of tailings from Musselwhite mine. ANOVA result shows that heating time is the most influencing factor on acid digestion of the reference materials whereas in case of a digestion of tailings sample, hydrochloric acid proved to be the most significant parameter. Satisfactory results between the measured and referenced values are found for all experiments. It is found that the aqua regia (1 ml HNO3 + 3 ml HCl) digestion of 0.1 g of samples after only 40 min of heating at 95°C produced fast, safe, and accurate analytical results with a recovery of 97% for the selected reference materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akcil, A., & Koldas, S. (2006). Acid mine drainage (AMD): causes, treatment and case studies. Journal of Cleaner Production, 14, 1139–1145.

    Article  Google Scholar 

  • Al-Harahsheha, M., Kinganb, S., Somerfieldb, C., & Ababneh, F. (2009). Microwave-assisted total digestion of sulphide ores for multi-element analysis. Analytica Chimica Acta, 638, 101–105.

    Article  Google Scholar 

  • Arthur, R. T., & Tom, D. A. (1971). Rapid analysis of total sulphur in soils and plant material. Plant and Soil, 35(1–3), 197–200.

    Google Scholar 

  • Artiola, J. F. (1990). Determination of Carbon, Nitrogen and Sulphur in soils, sediments and wastes. International Journal of Environmental Analytical Chemistry, 41, 159–171.

    Article  CAS  Google Scholar 

  • Bernhard, D., & Luis, F. A. (2002). Mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu–Au deposits from the Punta del Cobre belt, northern Chile. Chemical Geology, 189(3–4), 135–163.

    Google Scholar 

  • Bettinelli, M., Baron, U., & Pastorelli, N. (1989). Microwave oven sample dissolution for the analysis of environmental and biological materials. Analytica Chnica Acta, 225, 159–174.

    Article  CAS  Google Scholar 

  • Chao, Y. Z., Ming, K. W., Lip, L. K., & Yeow, C. W. (1995). Orthogonal array design for the optimization microwave digestion parameters for the metals in sediments. Analytica Chimica Acta, 314, 121–130.

    Article  Google Scholar 

  • Chen, M., & Ma, L. Q. (1998). Comparison of four USEPA digestion methods for trace metal analysis using certified and Florida soils. Journal of Environmental Quality, 27, 1294–1300.

    Article  CAS  Google Scholar 

  • Clesceri, L.S., Eaton, A.D., Greenberg, A.E. (1998). Standard methods for the examination of water and wastewater, 20th edn APHA, AWWA, WEF, Washington

  • Derek, W. (1998). Banded iron formation-hosted gold deposits. The Northern Miner. Available at: http://www.northernminer.com/resources/tools/Geology101/geo101pg3.aspx.

  • Dick, W. A., & Tabatabai, M. A. (1973). Ion chromatographic determination of sulfate and nitrate in soils. Soil Science Society of America Journal, 43, 899–904.

    Article  Google Scholar 

  • Douglas, C. M. (2001). Design and analysis of experiments. New York: Wiley.

    Google Scholar 

  • Evangelou, V. P., & Zhang, Y. L. (1995). Critical reviews. Environmental Science and Technology, 25, 141–199.

    Article  CAS  Google Scholar 

  • Falcina, R., Novaro, E., Marchesini, M., & Gucciardi, M. (2000). Journal of Analytical Atomic Spectrometry, 15, 561.

    Article  Google Scholar 

  • George, W. R. (1995). Sulfur management for corn growth with conservation tillage. Soil Science Society of America Journal, 69, 709–717.

    Google Scholar 

  • Guthrie, T. F., & Lowe, L. E. (1984). A comparison of methods for total sulphur analysis of tree foliage. Canadian Journal of Forest Research, 14, 47–73.

    Article  Google Scholar 

  • Hoenig, M., & Kersabiec, A. M. (1996). Sample preparation steps for analysis by atomic spectroscopy methods: present status. Spectrochimica Acta Part B: Atomic Spectroscopy, 51, 1297–1307.

    Article  Google Scholar 

  • Hogg, R. V., & Ledolter, J. (1987). Applied statistics for engineers and physical scientists. New York: Macmillan Publishing Company.

    Google Scholar 

  • Jenkins, D. A., Johnson, D. B., & Freeman, C. (2000). Mynydd Parys Cu-Pb-Zn mines: mineralogy, microbiology and acid mine drainage. In J. D. Cotter-Howells, L. S. Campbell, E. Valsami-Jones, & M. Batchelder (Eds.), Environmental mineralogy: microbial interactions, anthropogenic influences, contaminated land and waste management. The Mineralogy Society Series no.9 (pp. 161–180). London: Mineralogical Society.

    Google Scholar 

  • Jenner, G. A., Longerich, H. P., Jackson, S. E., & Fryer, B. J. (1990). ICP-MS A powerful tool for high-precision trace-element analysis in Earth sciences: evidence from analysis of selected U.S.G.S. Reference samples. Chemical Geology, 83, 133–148.

    Article  CAS  Google Scholar 

  • Krachler, M. C., Mohl, C., Emons, H., & Shotyk, W. (2002). Analytical procedures for the determination of selected trace elements in peat and plant samples by Inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 17, 844.

    Article  CAS  Google Scholar 

  • Landers, D. H., David, M. B., & Mitchell, M. J. (1983). Analysis of organic and inorganic sulphur constituents in sediments, soil and water. International Journal of Environmental and Analytical Chemistry, 14, 245–256.

    Article  CAS  Google Scholar 

  • Lechler, P. J., & Desilets, M. O. (1990). Dissolution of native sulfur by the acid bomb digestion technique for the determination of trace elements and total sulphur. Chemical Geology, 85(3–4), 305–309.

    Article  CAS  Google Scholar 

  • Maier, E. A. (1996). Certified reference materials for the quality control of measurements of industrial TrAC. Trends in Analytical Chemistry, 15, 341–348.

    CAS  Google Scholar 

  • Mark, B. D., Myron, J. M., Deidre, A., & Robert, B. H. (1989). Analysis of sulphur in soil, plant and sediment materials: sample handling and use of an automated analyzer. Soil Biology Biochemistry, 21(1), 119–123.

    Article  Google Scholar 

  • Matoorian, P., Sulaiman, S., & Ahmad, M. M. H. M. (2008). An experimental study for optimization of electrical discharge turning (EDT) process. Journal of Materials Processing Technology, 204, 350–356.

    Article  CAS  Google Scholar 

  • Mills, A. L. (1985). In D. Klein & R. L. Tate (Eds.), Soil reclamation processes (pp. 35–81). New York: Marcel Dekker.

    Google Scholar 

  • Muluken, B., Yeheyis, Shang, J. Q., & Yanful, E. K. (2009). Long-term evaluation of coal fly ash and mine tailings co-placement: A site-specific study. Journal of Environmental Management, 91, 237–244.

  • Nieuwenhuiz, J., Poley, C. H., Van, A. H., & Van, W. (1991). Comparison of microwave and conventional extraction techniques for the determination of metals in soil, sediment and sludge samples by atomic spectrometry. Analyst, 116, 347.

    Article  Google Scholar 

  • Novozamsky, I., Van Eck, R., Van der Lee, J. J., Houba, V. J. G., & Temminghoff, E. (1986). Determination of total sulphur and extractable sulphate in plant materials by Inductively-coupled plasma atomic emission spectrometry. Communications in Soil Science and Plum Analysis, 17, 1147–l157.

    Article  CAS  Google Scholar 

  • Penreath, R. J. (1994). The discharge of waters from active and abandoned mines. In R. E. Hester, & R. M. Harrison (Eds.), Mining and its environmental impact. Issues in Environmental Science and Technology no. 1 (pp. 121–132). Herts, UK: Royal Society of Chemistry.

  • Phadke, M. S. (1989). Quality engineering using robust design. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Pritchard, M. W., & Lee, J. (1984). Automatic continuous-flow determination of sulphite in the presence of a high concentration of thiosulphate. Analytica Chimica Acta, 302, 269–274.

    Google Scholar 

  • Rasian, S. R., Dias, M., Palamakumbura, S., & Jeganathan, H. (1987). High performance liquid chromatography as an analytical tool for the determination of sulfate in coconut and caffeine in tea. Journal Chemistry, 65, 974.

    Google Scholar 

  • Sandroni, V. C., Smith, M. M., & Donovan, A. (2003). Microwave digestion of sediment, soils and urban particulate matter for trace metal analysis. Talanta, 60(4), 715–723.

    Article  CAS  Google Scholar 

  • Steinmeyer, A., & Kolbesen, B. O. (2001). Capability and limitations of the determination of sulphur in inorganic and biological matrices by total reflection X-ray fluorescence spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 56(11), 2165–2217.

    Article  Google Scholar 

  • Sutarno, R., & Henry, F. S. (1985). Validation of accuracy by inter laboratory programme. Talanta, 32(11), 1088–1091.

    Article  CAS  Google Scholar 

  • Tabatabai, M. A., & Bremner, J. M. (1970). An alkaline oxidation method for determination of total sulfur in soils. Soil Science Society of America Proceedings, 34, 62–65.

    Article  CAS  Google Scholar 

  • Tabatabai, M. A., & Chae, Y. M. (1982). Alkaline oxidation method for determination of total sulfur in plant materials. Agronomy Journal, 74, 404–406.

    Article  CAS  Google Scholar 

  • Tabatabai, M. A., Basta, N. T., & Pirela, H. J. (1988). Determination of total sulfur in soils and plant materials by ion chromatography. Communications in Soil Science Plant Analysis, 19, 1701–1714.

    Article  CAS  Google Scholar 

  • Wang, H. L., Shang, J. Q., Kovac, V., & Ho, K. S. (2006). Utilization of Atikokan coal fly ash in acid rock drainage control from Musselwhite mine tailings. Canadian Geotechnical, 43, 229–243.

    Article  CAS  Google Scholar 

  • Zhao, F., & Mcgrath, S. P. (1994). Extractable sulfate and organic sulfur in soils and their availability to plants. Plant and Soil, 164, 243–250.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Goldcorp, OCE, and Golder Associate for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquibul Alam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alam, R., Shang, J.Q. & Cheng, X. Optimization of digestion parameters for analysing the total sulphur of mine tailings by inductively coupled plasma optical emission spectrometry. Environ Monit Assess 184, 3373–3387 (2012). https://doi.org/10.1007/s10661-011-2195-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2195-3

Keywords

Navigation