Skip to main content
Log in

ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Coagulation is the most important stage in drinking water treatment processes for the maintenance of acceptable treated water quality and economic plant operation, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw water characteristics such as turbidity, conductivity, pH, temperature, etc. As such, coagulation reaction is hard or even impossible to control satisfactorily by conventional methods. Traditionally, jar tests are used to determine the optimum coagulant dosage. However, this is expensive and time-consuming and does not enable responses to changes in raw water quality in real time. Modelling can be used to overcome these limitations. In this study, an Adaptive Neuro-Fuzzy Inference System (ANFIS) was used for modelling of coagulant dosage in drinking water treatment plant of Boudouaou, Algeria. Six on-line variables of raw water quality including turbidity, conductivity, temperature, dissolved oxygen, ultraviolet absorbance, and the pH of water, and alum dosage were used to build the coagulant dosage model. Two ANFIS-based Neuro-fuzzy systems are presented. The two Neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system (FIS), named ANFIS-GRID, and (2) subtractive clustering based (FIS), named ANFIS-SUB. The low root mean square error and high correlation coefficient values were obtained with ANFIS-SUB method of a first-order Sugeno type inference. This study demonstrates that ANFIS-SUB outperforms ANFIS-GRID due to its simplicity in parameter selection and its fitness in the target problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amirtarajah, A., & Trusler, S. L. (1986). Destabilisation of particles by turbulent rapid mixing. Journal of Environmental Engineering, 112(6), 1085–108.

    Article  Google Scholar 

  • Amirtharajah, A., & Mills, K. M. (1982). Rapid-mix design for mechanisms of alum flocculation. Journal of American Water Works Association, 74(4), 210–216.

    CAS  Google Scholar 

  • Amirtharajah, A., & O’Melia, C. R. (1990). Coagulation processes: destabilization, mixing, and flocculation. In F. W. Pontius (Ed.), Water quality and treatment (4th ed., pp. 269–365). Toronto: McGraw-Hill.

    Google Scholar 

  • Baxter, C. W., Stanley, S. J., & Zhang, Q. (1999). Development of a fullscale artificial neural network model for the removal ofnatural organic matter by enhanced coagulation. Journal of Water Supply: Research and Technology. AQUA, 48(4), 129–136.

    CAS  Google Scholar 

  • Baxter, C. W., Zhang, Q., Stanley, S. J., Shariff, R., Tupas, R.-R. T., & Stark, H. L. (2001). Drinking waer quality and treatment: the use of artificial neural networks. Canadian Journal of Civil Engineering, 28(Suppl. S1), 26–35.

    Article  Google Scholar 

  • Bazer-Bachi, A., Puech-Coste, E., Ben Aim, R., & Probst, J. L. (1990). Mathematical modeling of optimum coagulant dose in water treatment plant. Revue Des Sciences De L’eau, 3, 377–397.

    CAS  Google Scholar 

  • Buckley, J. J., & Hayashi, Y. (1994). Fuzzy neural networks. In L. A. Zadeh, R. R. Yager (Eds.), Fuzzy sets, neural networks and soft computing (p. 233–249). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Chiu, S. (1994). Fuzzy model identification based on cluster estimation. Journal of Intelligent & Fuzzy Systems, 2, 267–278.

    Google Scholar 

  • Daly, R., Van Leeuwen, J., & Holmes, M. (2007). Modelling coagulation to maximise removal of organic matter. A Pilot Plant and Laboratory Based Study, Chemical Dose Prediction. CRC for Water Quality and Treatment. Research Report 36 14-19. ISBN 18766 1661X.

  • Edzwald, J. K. (1993). Coagulation in drinking water treatment: particles, organics and coagulants. Water Science and Technology, 37, 21–35.

    Google Scholar 

  • Edzwald, J. K., & Tobaison, J. E. (1999). Enhanced coagulation: us requirements and a broader view. Water Science and Technology, 40(9), 63–70.

    Article  CAS  Google Scholar 

  • Edzwald, J. K., & Van Benschoten J. E. (1990). Aluminum coagulation of natural organic material. In H. H. Hahn & R. Klute (Eds.), Chemical water and wastewater treatment. Berlin: Springer.

    Google Scholar 

  • Gagnon, C., Grandjean, B. P. A., & Thibault, J. (1997). Modelling of coagulant dosage in a water treatment plant. Artificial Intelligence in Engineering, 11, 401–404.

    Article  Google Scholar 

  • Gregor, J. E., Nokes, C. J., & Fenton, E. (1997). Optimising natural organic matter removal from low turbidity waters by controlled pH adjustment of aluminium coagulation. Water Research, 31(12), 2949–2958.

    Article  CAS  Google Scholar 

  • Hanson, A. T., & Cleasby J. L. (1990). The effect of temperature on turbulent flocculation: fluid dynamics and chemistry. Journal of American Water Works Association, 82(11), 56–73.

    CAS  Google Scholar 

  • Hogg, R. (2000). Flocculation and dewatering. International Journal of Mineral Processing, 58, 223–236.

    Article  CAS  Google Scholar 

  • Hundt, T. R., & O’Melia, C. R. (1988). Aluminum–fulvic acid interactions: mechanisms and applications. Journal of American Water Works Association, 80(4), 176–186.

    CAS  Google Scholar 

  • Jang, J. S. R. (1993). ANFIS Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems Man and Cybernetics, 23(3), 665–685.

    Article  Google Scholar 

  • Jang, J. S. R., & Gulley, N. (1996). Fuzzy logic toolbox: Reference manual. Natick: The Mathworks Inc.

    Google Scholar 

  • Johnson, P. N., & Amirtharajah, A. (1983). Ferric chloride and alum as single and dual coagulants. Journal of American Water Works Association, 75, 232–239.

    CAS  Google Scholar 

  • Joo, D. S., Choi, D. J., & Park, H. (2000). The effects of data preprocessing in the determination of coagulant dosing rate. Water Research, 34(13), 3295–3302

    Article  CAS  Google Scholar 

  • Kang, L. S., & Cleasby, J. L. (1995). Temperature effects on flocculation kinetics using Fe(III) coagulant. Journal of Environmental Engineering, ASCE, 121(12), 893–910.

    Article  CAS  Google Scholar 

  • Letterman, R. D., Amirtharajah, A., & O’Melia, C. R. (1999). Coagulation and flocculation. In R. D. Letterman (Ed.), Water quality and treatment (pp. 6.1–6.66). New York: McGraw-Hill (Chapter 6)

    Google Scholar 

  • Maier, H. R., Morgan, N., & Chow, C. W. K. (2004). Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters. Environmental Modeling and Software, 19, 485–494.

    Article  Google Scholar 

  • Mamdani, E. H. (1976). Advances in the linguistic synthesis of fuzzy controllers. International Journal of Man-Machine Studies, 8, 669–678.

    Article  Google Scholar 

  • MathWorks, Inc. (2005). Matlab Programming, available at http://www.mathworks.com.

  • O’Melia, C. R. (1972). Coagulation and flocculation. In W. J. Weber Jr. (Ed.), Physicochemical processes for water quality control. New York: Wiley.

    Google Scholar 

  • Pernitsky, D. J., & Edzwald, J. K. (2003). Solubility of polyaluminium coagulants. Journal of Water Supply: Research and Technology. AQUA, 52(6), 395–406.

    CAS  Google Scholar 

  • Pernitsky, D. J., & Edzwald, J. K. (2006). Selection of alum and polyaluminium coagulants. Journal of Water Supply: Research and Technology. AQUA, 55(2), 121–141.

    CAS  Google Scholar 

  • Prathumratana, L., Sthiannopkao, S., & Kim, K. W. (2008). The relationship of climatic and hydrological parameters to surface water quality in the lower Mekong River. Environment International, 34, 860–866.

    Article  CAS  Google Scholar 

  • Randtke, S. J. (1988). Organic contaminant removal by coagulation and related process combinations. Journal of American Water Works Association, 80(5), 40–56.

    CAS  Google Scholar 

  • Stumm, W., & O’Melia, C. R. (1968). Stoichiometry of coagulation. Journal of American Water Works Association, 60, 514.

    CAS  Google Scholar 

  • Sugeno, M., & Kang, G. T. (1988). Structure identification of fuzzy model. Fuzzy Sets and Systems, 28, 15–33.

    Article  Google Scholar 

  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to Modeling and control. IEEE Transaction on Systems, Man, and Cybernetics, 15, 116–132.11.

    Google Scholar 

  • Tessem, B., & Davidsen, P. I. (1994). Fuzzy system dynamics: an approach to vague and qualitative variables in simulation. System Dynamics Review, 10, 49–62

    Article  Google Scholar 

  • Van Benschoten, J. E., & Edzwald, J. K. (1990). Chemical aspects of coagulation using aluminium salts-II. Coagulation of fulvic acid using alum and polyalurninum chloride. Water Research, 24(12), 1527–1535.

    Article  Google Scholar 

  • Van Leeuwen, J., Schell, H., Berger, M., Drikas, M., Bursill, D., Chow, C., & Clasen, J. (1997). Comparison of coagulant doses determined using a charge titration unit with a jar test procedure for eight German surface waters. Journal of Water Science Research and Technology. AQUA, 46(5), 261–273.

    Google Scholar 

  • Van Leeuwen, J., Chow, C. W. K., Bursill, D., & Drikas, M. (1999). Empirical mathematical models and artificial neural networks for the determination of alum doses for treatment of southern Australian surface waters. Journal of Water Science Research and Technology. AQUA, 48(3), 115–127.

    Google Scholar 

  • Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., & Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology, 37, 4702–4708.

    Article  CAS  Google Scholar 

  • Wu, G. D., & Lo, S. L. (2008). Predicting real-time coagulant dosage in water treatment by artificial neural networks and adaptive network based fuzzy inference system. Engineering Applications of Artificial Intelligence, 21(8), 1189–1195.

    Article  Google Scholar 

  • Yager, R. R., & Filev, D. P. (1994). Approximate clustering via the mountain method. IEEE Transactions on Systems, Man and Cybernetics, 24(8), 1279–1284.

    Article  Google Scholar 

  • Yu, R. F., Kang, S. F., Liaw, S. L., & Chen, M. C. (2000). Application of artificial neural network to control the coagulant dosing in water treatment plant. Water Science and Technology, 42(3–4), 403–408.

    CAS  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Heddam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heddam, S., Bermad, A. & Dechemi, N. ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study. Environ Monit Assess 184, 1953–1971 (2012). https://doi.org/10.1007/s10661-011-2091-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2091-x

Keywords

Navigation